en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张毅,E-mail:zhy@mail.usts.edu.cn

中图分类号:O316

文献标识码:A

文章编号:1672-6553-2022-20(6)-106-08

DOI:10.6052/1672-6553-2022-012

参考文献 1
梅凤翔.分析力学(下卷).北京:北京理工大学出版社,2013(Mei F X.Analytical mechanics(Volume II).Beijing:Beijing Institute of Technology Press,2013(in Chinese))
参考文献 2
Herglotz G.Gesammelte Schriften.Göttingen:Vandenhoeck & Ruprecht,1979
参考文献 3
Donchev V.Variational symmetries,conserved quantities and identities for several equations of mathematical physics.Journal of Mathematical Physics,2014,55(3):032901
参考文献 4
Lazo M J,Paiva J,Amaral J T S,et al.An action principle for action-dependent Lagrangians:Toward an action principle to non-conservative systems.Journal of Mathematical Physics,2018,59(3):032902
参考文献 5
Lazo M J,Paiva J,Frederico G S F.Noether theorem for action-dependent Lagrangian functions:conservation laws for non-conservative systems.Nonlinear Dynamics,2019,97(2):1125~1136
参考文献 6
Georgieva B,Guenther R.First Noether-type theorem for the generalized variational principle of Herglotz.Topological Methods in Nonlinear Analysis,2002,20(2):261~273
参考文献 7
Georgieva B.Guenther R.Second Noether-type theorem for the generalized variational principle of Herglotz.Topol Methods Nonlinear Anal,2005,26(2):307~314
参考文献 8
Santos S P S,Martins N,Torres D F M.Higher-order variational problems of Herglotz type with time delay.Pure and Applied Functional Analysis,2016,1(2):291~307
参考文献 9
Santos S P S,Martins N,Torres D F M.Noether currents for higher-order variational problems of Herglotz type with time delay.Discrete and Continuous Dynamical Systems,Series S,2018,11(1):91~102
参考文献 10
张毅.相空间中非保守系统Herglotz广义变分原理及其Noether定理.力学学报,2016,48(6):1382~1389(Zhang Y.Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether’s theorem.Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1382~1389(in Chinese))
参考文献 11
徐鑫鑫,张毅.分数阶非保守Lagrange系统的一类新型绝热不变量.物理学报,2020,69(22):220401(Xu X X,Zhang Y.A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems.Acta Physica Sinica,2020,69(22):220401(in Chinese))
参考文献 12
Zhang Y.Herglotz's variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem.Symmetry,2020,12(5):845
参考文献 13
Zhang Y,Tian X.Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems.Physics Letters A,2019,383:691~696
参考文献 14
Zhang Y.Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem.Acta Mechanica,2017,228(4):1481~1492
参考文献 15
Zhang Y.Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type.International Journal of Non-Linear Mechanics,2018,101:36~43
参考文献 16
Meshcherskii I V.Equations of motion of a variable mass point in the general case.St.Petersburg Polytechnic University News,1904,1:77~118(in Russian)
参考文献 17
杨来伍,梅凤翔.变质量系统力学.北京:北京理工大学出版社,1989(Yang L W,Mei F X.Variable mass system mechanics.Beijing:Beijing Institute of Technology Press,1989(in Chinese))
参考文献 18
Cveticanin L.A review on dynamics of mass variable systems.Journal of the Serbian Society for Computational Mechanics,2012,6(1):56~73
参考文献 19
Hurtado J E.Analytical dynamics of variable-mass systems.Journal of Guidance,Control,and Dynamics,2018,41(3):701~709
参考文献 20
Jiang W A,Han X J,Chen L Q,et al.Probabilistic solutions of a variable-mass system under random excitations.Acta Mechanica,2020,231(7):2815~2826
参考文献 21
Cveticanin L.Conservation laws in systems with variable mass.Journal of Applied Mechanics,1993,60(4):954~958
参考文献 22
梅凤翔.约束力学系统的对称性与守恒量.北京:北京理工大学出版社,2004(Mei F X.Symmetry and conserved quantities of constrained mechanical systems.Beijing:Beijing Institute of Technology Press,2004(in Chinese))
参考文献 23
Jiang W A,Liu K,Zhao G L,et al.Noether symmetrical perturbation and adiabatic invariants for disturbed non-material volumes.Acta Mechanica,2018,229(12):4771~4778
参考文献 24
Jiang W A,Liu K,Xia Z W,et al.Mei symmetry and new conserved quantities for non-material volumes.Acta Mechanica,2018,229(9):3781~3786
参考文献 25
Liu K,Gao Y,Jiang W A,et al.Conformal invariance and conserved quantities of nonmaterial volumes.Reports on Mathematical Physics,2019,84(3):365~373
参考文献 26
梅凤翔.高等分析力学.北京:北京理工大学出版社,1991(Mei F X.Advanced analytical mechanics.Beijing:Beijing Institute of Technology Press,1991(in Chinese))
目录contents

    摘要

    Herglotz变分原理提供了非保守耗散问题的变分描述,同时变质量力学在自然界和工程领域有大量的应用,因此将Herglotz变分原理应用于变质量力学系统的Lagrange方程与守恒律研究,为研究变质量力学提供了一个新的途径.文中建立了变质量力学系统的Herglotz型广义变分原理,导出了变质量系统的Herglotz型Lagrange方程.定义了变质量力学系统的Herglotz型Noether对称性,建立并证明了Herglotz型Noether定理及其逆定理.文末给出两个变质量非保守系统的具体例子以说明结果的应用.

    Abstract

    Herglotz’s variational principle provides a variational description of non-conservative dissipation problems, and variable mass mechanics is widely used in nature and engineering. Therefore, it provides a new way to study variable mass mechanics by applying Herglotz’s variational principle to Lagrange equations and conservation laws of variable mass mechanics systems. In this paper, the Herglotz type generalized variational principle of mechanical systems with variable mass is established and the Herglotz type Lagrange equations of mechanical systems with variable mass are derived. Herglotz type Noether symmetry of variable mass mechanical systems is defined, and the Herglotz Noether theorem and its inverse theorem are established and proved. At the end of this paper, two concrete examples of non-conservative systems with variable mass are given to illustrate the application of the results.

  • 引言

  • 众所周知,对于非保守这样一类自然界广泛存在的现象,人们无法将其纳入哈密顿变分原理的经典框架之中[1].德国数学家Herglotz提出的一类变分问题[2],不仅是对经典变分原理的推广,而且提供非保守和耗散过程的变分描述.Herglotz变分问题与经典变分问题的不同之处在于其微分方程不仅取决于时间、曲线及其导数,还取决于积分泛函本身.Donchev[3]和Lazo等[45]对若干重要的非保守经典和量子系统的变分描述进行了研究,如:黏性力下振动弦、非保守电磁理论、非保守薛定谔方程等.Georgieva和Guenther研究了Herglotz型Noether定理[67].Santos等[89]将 Herglotz变分问题推广到高阶微商情形.近年来,张毅等将Herglotz变分问题引入力学系统[10],建立了非保守系统[1112]、非完整系统[13]和Birkhoff系统[1415]的Herglotz变分原理和Noether定理.但是,到目前为止关于Herglotz变分原理的研究还仅限于常质量系统.

  • 变质量系统力学研究质量变化的物体的运动与作用在其上的力之间的关系.第一个系统地研究变质量力学的是Meshchersky[16],通过引入质量以不为零的相对速度分离或并入物体时所产生的冲击力,他建立了变质量质点的动力学基本方程.1989年,杨来伍和梅凤翔[17]在他们的专著中系统地介绍了变质量系统的牛顿力学和变质量系统的分析力学.变质量系统在自然界和工程技术领域有大量应用实例[18-20],包括复杂系统,如火箭运动、移动机器人拾取或释放物体等,以及简单系统,如喷水系统或漏气的充气气球的运动等.守恒律是变质量系统力学研究的一个重要方面.Cveticanin利用d’Alembert-Lagrange原理构建了变质量系统的Noether守恒律[21].梅凤翔在其著作[122]中研究了变质量力学系统的对称性与守恒量.最近,姜文安等[23-25]研究了一类变质量系统的Noether守恒律和Mei守恒律.

  • 变质量力学系统的问题可分为两类[26]:一类是质量变化不改变运动学性质; 另一类是质量的变化将引起系统运动学性质的改变.本文研究第一类问题.将Herglotz广义变分原理推广到变质量非保守力学系统,导出变质量系统的Herglotz型Lagrange方程,研究并证明其Noether定理及其逆定理.

  • 1 变质量力学系统的Herglotz型Lagrange方程

  • 假设变质量力学系统由N个质点组成.在时刻t,第i个质点的质量为mii=1,2N; 在时刻t +dt,由质点分离(或并入)的微粒质量为dmi.设系统所受完整约束中不含质点的质量,质点系的位形由n个广义坐标qss=1,2n确定,并假设

  • mi=mit,qs,q˙s
    (1)
  • 变质量力学系统的Herglotz变分问题可表述如下:

  • 确定函数qsttt1t2,使得泛函zt2取得极值,即zt2→extr.,其中zt由微分方程

  • z˙(t)=Lt,qs(t),q˙s(t),z(t),mit,qs,q˙s
    (2)
  • 定义,且满足端点条件

  • qs(t)t=t1=qs1,qs(t)t=t2=qs2(s=1,2,,n)
    (3)
  • 和初始条件

  • z(t)t=t1=z1
    (4)
  • 泛函zt也称为Herglotz作用量.

  • ДДt Д Дqs以及 Д Дq˙s分别表示将质量当作常数时对tqs以及q˙s的偏导数,称为凝固偏导数; 符号DDt表示将质量当作常数时对时间的导数,称为凝固导数.

  • 对方程(2)取等时变分,有

  • δz˙=ДLДqsδqs+ДLДqs˙δq˙s+Lmiδmi+Lzδz
    (5)
  • 其中

  • δmi=miqsδqs+miq˙sδq˙s
    (6)
  • 由交换关系

  • δz˙=ddtδz
    (7)
  • 则方程(5)可以表示为

  • ddtδz=A+Lzδz
    (8)
  • 其中

  • A=ДLДqsδqs+Lmimiqsδqs+ДLДqs˙δq˙s+Lmimiq˙sδq˙s
    (9)
  • 方程(8)有解

  • δz(t)exp-t1t Lzdθ-δzt1=t1t Aexp-t1t Lzdθdτ
    (10)
  • 考虑到初始条件(4),且zt2取得极值,因此有

  • δzt1=δzt2=0
    (11)
  • 所以有

  • t1t2 Aexp-t1t Lzdθdτ=0
    (12)
  • 将式(9)代入方程(12),并对其中含δq˙s的项进行分部积分,得

  • t1t2 exp-t1t LzdθДLДqs+Lmimiqs-DDtДLДqs˙-LmiДLДqs˙m˙i-ddtLmimiq˙s+LzДLДqs˙+LzLmimiq˙sδqsdt=0
    (13)
  • 由于δqs的独立性,根据变分学基本引理,可得

  • exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs+ψs=0(s=1,2,,n)
    (14)
  • 其中

  • ψs=Lmimiqs+LzLmimiq˙s-miДLДqs˙m˙i-ddtLmimiq˙s
    (15)
  • 方程(14)称为变质量力学系统用凝固导数表示的Herglotz型Lagrange方程.

  • 容易证明下述关系:

  • ddtДLДqs˙=DDtДLДqs˙+miДLДqs˙m˙i
    (16)
  • 将式(16)代入式(14)可得:

  • exp-t1t Lzdθ-ddtДLДqs˙+ДLДqs+LzДLДqs˙+φs=0(s=1,2,,n)
    (17)
  • 其中

  • φs=Lmimiqs+LzLmimiq˙s-ddtLmimiq˙s
    (18)
  • 方程(17)称为变质量力学系统用半凝固导数表示的Herglotz型Lagrange方程.

  • 容易证明下述关系:

  • ddtLq˙s=ddtДLДqs˙+ddtLmimiq˙s
    (19)
  • Lqs=ДLДqs+Lmimiqs
    (20)
  • 将式(19)和式(20)代入式(17)可得

  • exp-t1t Lzdθ-ddtLq˙s+Lqs+LzLq˙s=0(s=1,2,,n)
    (21)
  • 方程(21)称为变质量力学系统用普通导数表示的Herglotz型Lagrange方程.

  • 上述三类变质量系统的Herglotz型Lagrange方程是经典变质量完整力学系统广义坐标表示的Lagrange方程[17]的推广.文献[17]指出:当质点质量依赖于广义坐标、广义速度和时间时,应用凝固导数表示的方程最简便,应用普通导数表示的方程最繁杂.

  • 2 Herglotz型Noether对称性

  • 引入时间t和广义坐标qsr参数有限变换群Gr的无限小变换

  • t-=t+Δt,q-s(t)=qs(t)+Δqs(s=1,2,,n)
    (22)
  • 或其展开式

  • t-=t+εαξ0αt,qs,q˙s,mi,z,q-s(t)=qs(t)+εαξsαt,qj,q˙j,mi,z,(s,j=1,2,,n;α=1,2,,r;i=1,2,,N)
    (23)
  • 其中,εα为无限小的参数,ξ0αξsα称为该变换的生成元.在变换式(22)的作用下,Herglotz作用量z变成

  • z-(t-)=z(t)+Δz(t)
    (24)
  • 全变分Δz是Herglotz作用量z在无限小变换中相对于εα的主线性部分的前后之差.对任意函数Ft),有如下关系

  • ΔF=δF+F˙Δt
    (25)
  • 对于完整约束系统,有交换关系

  • ddtδF=δddtF=δF˙
    (26)
  • 因此得到

  • ΔF˙=ddtΔF-F˙ddtΔt
    (27)
  • 对式(2)进行非等时变分:

  • Δz˙=ДLДtΔt+ДLДqsΔqs+ДLДqs˙Δq˙s+LzΔz+LmiΔmi
    (28)
  • 由于

  • Δmi=mitΔt+miqsΔqs+miq˙sΔq˙s
    (29)
  • 将式(29)代入式(28),并利用关系式(27),得

  • ddtΔz=ДLДtΔt+ДLДqsΔqs+ДLДqs˙Δq˙s+LzΔz+LmimitΔt+LmimiqsΔqs+Lmimiq˙sΔq˙s+LddtΔt
    (30)
  • 方程(30)的解为

  • Δz(t)exp-t1t Lzdθ-Δzt1=t1t e x p(-t1τ Lzdθ)ДLДtΔt+ДLДqsΔqs+ДLДqs˙Δq˙s+LmimitΔt+LmimiqsΔqs+Lmimiq˙sΔq˙s+LddtΔtdτ
    (31)
  • 显然Δzt1=0,所以方程(31)还可以写为

  • Δz (t) exp-t1t Lzdθ=t1t ddτLΔt+ДLДqs˙+Lmimiq˙sΔqs-q˙sΔt

  • exp-tτ Lzdθ+exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsΔqs-q˙sΔtdτ=0
    (32)
  • 由于

  • Δt=εαξ0α,Δqs=εαξsα
    (33)
  • 将式(33)代入式(31)可得

  • Δz(t)exp-t1t Lzdθ=t1t e x p(-t1τ Lzdθ)ДLДτ+Lmimiτξ0α+ДLДqs+Lmimiqsξsα+ДLДqs˙+Lmimiq˙sξ˙sα+L-ДLДqs˙q˙s-Lmimiq˙sq˙sξ˙0αεαdτ
    (34)
  • 将式(33)代入式(32)可得

  • Δz(t)exp-t1t Lzdθ=t1t ddτLξ0α+ДLДqs˙+Lmimiq˙sξ-sαexp-t1τ Lzdθ+exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsξ-sαεαdτ=0
    (35)
  • 其中

  • ξ-sα=ξsα-q˙sξ0α
    (36)
  • 定义1 对于变质量力学系统(14),如果对于无限小变换(22)的每一个变换,等式

  • Δzt2=0
    (37)
  • 成立,则称变换是该系统的Noether对称变换.

  • 根据定义1以及方程(34),可以得到如下判据.

  • 判据1 在变质量力学系统(14)中,对于无限小变换(23),假设生成元ξ0αξsα符合下列条件

  • ДLДt+Lmimitξ0α+ДLДqs+Lmimiqsξsα+ДLДqs˙+Lmimiq˙sξ˙sα+L-ДLДqs˙q˙s-Lmimiq˙sq˙sξ˙0α=0(α=1,2,,r)
    (38)
  • 则称变换是该系统的Noether对称变换.

  • r =1时,式(38)给出

  • ДLДt+Lmimitξ0+ДLДqs+Lmimiqsξs+ДLДqs˙+Lmimiq˙sξ˙s+L-ДLДqs˙q˙s-Lmimiq˙sq˙sξ˙0=0
    (39)
  • 式(39)为变质量力学系统(14)的Noether等式.

  • 3 Herglotz型Noether定理

  • 定理1 对于变质量力学系统(14),若给定的有限变换群Gr的无限小变换(23)是Herglotz型Noether对称变换,则系统存在r个线性独立的守恒量

  • INα=Lξ0α+ДLДqs˙+Lmimiq˙sξ-sαexp-t1τ Lzdθ=cα
    (40)
  • 证明 由于无限小变换(23)是变质量力学系统(14)的Herglotz型Noether对称变换,根据定义1,有Δzt2=0.利用公式(35),得到

  • t1t2 {ddτLξ0α+ДLДqs˙+Lmimiq˙sξ-sαexp-t1τ Lzdθ+exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsξ-sαεαdτ=0
    (41)
  • 由于区间[t1t2]是任意的,εα是相互独立的,根据变分法的基本引理,得到

  • ddtLξ0α+ДLДqs˙+Lmimiq˙sξ-sαexp-t1t Lzdθ+exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsξ-sα=0
    (42)
  • 对于变质量力学系统有Herglotz型Lagrange方程(14),因此得

  • ddtLξ0α+ДLДqs˙+Lmimiq˙sξ-sαexp-tτ Lzdθ=0
    (43)
  • 积分便可得到守恒量(40).

  • 4 Herglotz型Noether逆定理

  • 已知变质量力学系统(14)有r个线性独立的守恒量

  • Iα=Iαt,qs,q˙s,mi,z=cα(α=1,2,,r)
    (44)
  • 求满足Herglotz型Noether对称性的生成函数ξ0αξsα.

  • 将式(14)乘ξ-sα,并对s求和,得到

  • exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsξ-sα=0
    (45)
  • 将式(44)对t求导数后与式(45)相加,展开得

  • ДIαДt+ДIαДqsq˙s+ДIαДqs˙q¨s+Iαmim˙s+IαzL+exp-t1t Lzdθ-DDtДLДqs˙+ДLДqs+LzДLДqs˙+ψsξ-sα=0
    (46)
  • 令含q¨k项的系数为0,可得

  • ДIαДqs˙+Iαmimiq˙s-ξ-kαexp-t1t LzdθД2LДqs˙Дqk˙+miДLДqk˙miq˙s+q˙sLmimiq˙k=0(s=1,2,n;α=1,2,,r)
    (47)
  • 再令式(44)等于式(40),可得

  • ξ0α=1Lexpt1t LzdθIα-ДLДqs˙+Lmimiq˙sξ-sα(α=1,2,,r)
    (48)
  • 由式(47)和式(48)可以找到无限小生成函数,它们对应变质量力学系统(14)的Noether对称变换.于是有:

  • 定理2 对于变质量力学系统(14),如果已知r个线性独立的守恒量(44),那么生成函数由式(47)和式(48)确定的无限小变换相应于系统的Herglotz型Noether对称性.

  • 定理2称为变质量力学系统的Herglotz型Noether逆定理.

  • 5 算例

  • 例1 假设一变质量质点在铅垂平面内运动,其质量为

  • m(t)=m0exp(-αt)m0= const. ; α= const. ,α>0)
    (49)
  • 设质点的运动受黏性阻尼的作用,阻尼系数为c =const.,微粒分离的绝对速度为零.试研究该系统的Noether对称性和守恒量.

  • 选取广义坐标q1=xq2=y,则系统的Herglotz型Lagrange函数为

  • L=12m(t)q˙12+q˙22-m(t)gq2-cm(t)+αz
    (50)
  • 其中,泛函 满足

  • z˙=12m(t)q˙12+q˙22-m(t)gq2-cm(t)+αz
    (51)
  • 根据式(14)给出该系统的运动方程为

  • exp[λ(t)]-m(t)q¨1-cq˙1=0exp[λ(t)]-m(t)q¨2-m(t)g-cq˙2=0
    (52)
  • 其中,λt=ceαt-eαt1αm0+αt-t1.

  • Noether等式(39)给出

  • -12αm(t)q˙12+q˙22+αm(t)gq2-αcm(t)zξ0-m(t)gξ2+m(t)q˙1ξ˙1+m(t)q˙2ξ˙2-12m(t)q˙12+q˙22+m(t)gq2+cm(t)+αzξ˙0=0
    (53)
  • 方程(53)有解

  • ξ0=0,ξ1=1,ξ2=0
    (54)
  • ξ0=0,ξ1=-cαm(t)-lnq˙1,ξ2=0
    (55)
  • 由定理1,得到

  • IN=exp[λ(t)]m(t)q˙1= const.
    (56)
  • IN=exp[λ(t)]m(t)q˙1-cαm(t)-lnq˙1= const.
    (57)
  • 式(56)和式(57)分别为生成函数(54)、函数(55)相应的Noether守恒量.

  • 根据Herglotz型Noether逆定理,由已知的守恒量求Noether对称性.假设系统有守恒量(56),则由式(47)和式(48),可以得到

  • exp[λ(t)]m(t)1-ξ-1=0-exp[λ(t)]m(t)ξ-2=0
    (58)
  • 以及

  • ξ0=mq˙1-mq˙1ξ-1-mq˙2ξ-2L
    (59)
  • 由方程(58)和方程(59)解得

  • ξ0=0,ξ1=1,ξ2=0
    (60)
  • 例2 球形的雨滴在大气中下落,沿途受到水汽的充实.设雨滴的初始半径为r0,由于凝聚,雨滴的质量以正比于其表面积的速率增加[22],比例系数为α.假设雨滴下落过程中受到与速度成正比的阻力作用,阻力系数为μ.试研究该系统的Noether对称性与守恒量.

  • 因为

  • dmdt=4πr2α,r=r0+αt
    (61)
  • 故有

  • m(t)=43πr3
    (62)
  • 系统的Herglotz型Lagrange函数为

  • L=12m(t)q˙12+q˙22+q˙32-mgq3-μm-3αrz
    (63)
  • 式中的 Herglotz作用量 zt满足方程

  • z˙=12m(t)q˙12+q˙22+q˙32-mgq3-μm-3αrz
    (64)
  • 根据式(14),该系统的运动微分方程为

  • exp[λ(t)]-mq¨1-μq˙1=0exp[λ(t)]-mq¨2-μq˙2=0exp[λ(t)]-mq¨3-mg-μq˙3=0
    (65)
  • 其中

  • λt=3lnr0+αt1r+3μ8παr0+αt12-μr2αm
    (66)
  • Noether等式(39)给出

  • 2πr2αq˙12+q˙22+q˙32-4πr2αgq3-3αμmrzξ0-m(t)gξ3+m(t)q˙1ξ˙1+m(t)q˙2ξ˙2+m(t)q˙3ξ˙3-12m(t)q˙12+q˙22+q˙32+m(t)gq3+μm-3αrzξ˙0=0
    (67)
  • 方程(67)有解

  • ξ0=0,ξ1=1,ξ2=1,ξ3=0
    (68)
  • ξ0=0,ξ1=3μ8παr2-lnq˙1,ξ2=1,ξ3=0
    (69)
  • 由定理1,得到

  • IN=exp[λ(t)]m(t)q˙1+m(t)q˙2= const.
    (70)
  • IN=exp[λ(t)]mq˙2+mq˙13μ8παr2-lnq˙1= const.
    (71)
  • 式(70)、式(71)分别为生成函数(68)、函数(69)所导致的Noether守恒量.

  • 根据Herglotz型Noether逆定理,由已知守恒量求Noether对称性.假设系统有守恒量(70),则由式(47)和式(48),可以得到

  • exp[λ(t)]m(t)1-ξ-1=0exp[λ(t)]m(t)1-ξ-2=0-exp[λ(t)]m(t)ξ-3=0
    (72)
  • 以及

  • ξ0=m(t)q˙1+q˙2-q˙1ξ-1-q˙2ξ-2-q˙3ξ-3L
    (73)
  • 由方程(72)、方程(73)解得

  • ξ0=0,ξ1=1,ξ2=1,ξ3=0
    (74)
  • 6 结论

  • 变质量力学系统研究的是物体质量在不断变化的状态下,物体运动状态与作用在其上力的关系.由于变质量系统在自然界和工程领域普遍存在,因此变质量力学的研究具有重要意义.本文研究了变质量力学系统的Herglotz型Lagrange方程与Noether对称性及其守恒量,主要工作如下:提出了变质量力学系统中的Herglotz型广义变分原理,并基于该原理建立了分别用凝固导数、半凝固导数、普通导数表示的变质量力学系统的Herglotz型Lagrange方程(14)、式(17)和式(21); 提出了变质量力学系统Herglotz型Noether对称性的定义及其判据方程(39); 建立并证明了变质量力学系统Herglotz型Noether定理(定理1)及其逆定理(定理2).

  • 参考文献

    • [1] 梅凤翔.分析力学(下卷).北京:北京理工大学出版社,2013(Mei F X.Analytical mechanics(Volume II).Beijing:Beijing Institute of Technology Press,2013(in Chinese))

    • [2] Herglotz G.Gesammelte Schriften.Göttingen:Vandenhoeck & Ruprecht,1979

    • [3] Donchev V.Variational symmetries,conserved quantities and identities for several equations of mathematical physics.Journal of Mathematical Physics,2014,55(3):032901

    • [4] Lazo M J,Paiva J,Amaral J T S,et al.An action principle for action-dependent Lagrangians:Toward an action principle to non-conservative systems.Journal of Mathematical Physics,2018,59(3):032902

    • [5] Lazo M J,Paiva J,Frederico G S F.Noether theorem for action-dependent Lagrangian functions:conservation laws for non-conservative systems.Nonlinear Dynamics,2019,97(2):1125~1136

    • [6] Georgieva B,Guenther R.First Noether-type theorem for the generalized variational principle of Herglotz.Topological Methods in Nonlinear Analysis,2002,20(2):261~273

    • [7] Georgieva B.Guenther R.Second Noether-type theorem for the generalized variational principle of Herglotz.Topol Methods Nonlinear Anal,2005,26(2):307~314

    • [8] Santos S P S,Martins N,Torres D F M.Higher-order variational problems of Herglotz type with time delay.Pure and Applied Functional Analysis,2016,1(2):291~307

    • [9] Santos S P S,Martins N,Torres D F M.Noether currents for higher-order variational problems of Herglotz type with time delay.Discrete and Continuous Dynamical Systems,Series S,2018,11(1):91~102

    • [10] 张毅.相空间中非保守系统Herglotz广义变分原理及其Noether定理.力学学报,2016,48(6):1382~1389(Zhang Y.Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether’s theorem.Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1382~1389(in Chinese))

    • [11] 徐鑫鑫,张毅.分数阶非保守Lagrange系统的一类新型绝热不变量.物理学报,2020,69(22):220401(Xu X X,Zhang Y.A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems.Acta Physica Sinica,2020,69(22):220401(in Chinese))

    • [12] Zhang Y.Herglotz's variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem.Symmetry,2020,12(5):845

    • [13] Zhang Y,Tian X.Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems.Physics Letters A,2019,383:691~696

    • [14] Zhang Y.Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem.Acta Mechanica,2017,228(4):1481~1492

    • [15] Zhang Y.Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type.International Journal of Non-Linear Mechanics,2018,101:36~43

    • [16] Meshcherskii I V.Equations of motion of a variable mass point in the general case.St.Petersburg Polytechnic University News,1904,1:77~118(in Russian)

    • [17] 杨来伍,梅凤翔.变质量系统力学.北京:北京理工大学出版社,1989(Yang L W,Mei F X.Variable mass system mechanics.Beijing:Beijing Institute of Technology Press,1989(in Chinese))

    • [18] Cveticanin L.A review on dynamics of mass variable systems.Journal of the Serbian Society for Computational Mechanics,2012,6(1):56~73

    • [19] Hurtado J E.Analytical dynamics of variable-mass systems.Journal of Guidance,Control,and Dynamics,2018,41(3):701~709

    • [20] Jiang W A,Han X J,Chen L Q,et al.Probabilistic solutions of a variable-mass system under random excitations.Acta Mechanica,2020,231(7):2815~2826

    • [21] Cveticanin L.Conservation laws in systems with variable mass.Journal of Applied Mechanics,1993,60(4):954~958

    • [22] 梅凤翔.约束力学系统的对称性与守恒量.北京:北京理工大学出版社,2004(Mei F X.Symmetry and conserved quantities of constrained mechanical systems.Beijing:Beijing Institute of Technology Press,2004(in Chinese))

    • [23] Jiang W A,Liu K,Zhao G L,et al.Noether symmetrical perturbation and adiabatic invariants for disturbed non-material volumes.Acta Mechanica,2018,229(12):4771~4778

    • [24] Jiang W A,Liu K,Xia Z W,et al.Mei symmetry and new conserved quantities for non-material volumes.Acta Mechanica,2018,229(9):3781~3786

    • [25] Liu K,Gao Y,Jiang W A,et al.Conformal invariance and conserved quantities of nonmaterial volumes.Reports on Mathematical Physics,2019,84(3):365~373

    • [26] 梅凤翔.高等分析力学.北京:北京理工大学出版社,1991(Mei F X.Advanced analytical mechanics.Beijing:Beijing Institute of Technology Press,1991(in Chinese))

  • 参考文献

    • [1] 梅凤翔.分析力学(下卷).北京:北京理工大学出版社,2013(Mei F X.Analytical mechanics(Volume II).Beijing:Beijing Institute of Technology Press,2013(in Chinese))

    • [2] Herglotz G.Gesammelte Schriften.Göttingen:Vandenhoeck & Ruprecht,1979

    • [3] Donchev V.Variational symmetries,conserved quantities and identities for several equations of mathematical physics.Journal of Mathematical Physics,2014,55(3):032901

    • [4] Lazo M J,Paiva J,Amaral J T S,et al.An action principle for action-dependent Lagrangians:Toward an action principle to non-conservative systems.Journal of Mathematical Physics,2018,59(3):032902

    • [5] Lazo M J,Paiva J,Frederico G S F.Noether theorem for action-dependent Lagrangian functions:conservation laws for non-conservative systems.Nonlinear Dynamics,2019,97(2):1125~1136

    • [6] Georgieva B,Guenther R.First Noether-type theorem for the generalized variational principle of Herglotz.Topological Methods in Nonlinear Analysis,2002,20(2):261~273

    • [7] Georgieva B.Guenther R.Second Noether-type theorem for the generalized variational principle of Herglotz.Topol Methods Nonlinear Anal,2005,26(2):307~314

    • [8] Santos S P S,Martins N,Torres D F M.Higher-order variational problems of Herglotz type with time delay.Pure and Applied Functional Analysis,2016,1(2):291~307

    • [9] Santos S P S,Martins N,Torres D F M.Noether currents for higher-order variational problems of Herglotz type with time delay.Discrete and Continuous Dynamical Systems,Series S,2018,11(1):91~102

    • [10] 张毅.相空间中非保守系统Herglotz广义变分原理及其Noether定理.力学学报,2016,48(6):1382~1389(Zhang Y.Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether’s theorem.Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1382~1389(in Chinese))

    • [11] 徐鑫鑫,张毅.分数阶非保守Lagrange系统的一类新型绝热不变量.物理学报,2020,69(22):220401(Xu X X,Zhang Y.A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems.Acta Physica Sinica,2020,69(22):220401(in Chinese))

    • [12] Zhang Y.Herglotz's variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem.Symmetry,2020,12(5):845

    • [13] Zhang Y,Tian X.Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems.Physics Letters A,2019,383:691~696

    • [14] Zhang Y.Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem.Acta Mechanica,2017,228(4):1481~1492

    • [15] Zhang Y.Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type.International Journal of Non-Linear Mechanics,2018,101:36~43

    • [16] Meshcherskii I V.Equations of motion of a variable mass point in the general case.St.Petersburg Polytechnic University News,1904,1:77~118(in Russian)

    • [17] 杨来伍,梅凤翔.变质量系统力学.北京:北京理工大学出版社,1989(Yang L W,Mei F X.Variable mass system mechanics.Beijing:Beijing Institute of Technology Press,1989(in Chinese))

    • [18] Cveticanin L.A review on dynamics of mass variable systems.Journal of the Serbian Society for Computational Mechanics,2012,6(1):56~73

    • [19] Hurtado J E.Analytical dynamics of variable-mass systems.Journal of Guidance,Control,and Dynamics,2018,41(3):701~709

    • [20] Jiang W A,Han X J,Chen L Q,et al.Probabilistic solutions of a variable-mass system under random excitations.Acta Mechanica,2020,231(7):2815~2826

    • [21] Cveticanin L.Conservation laws in systems with variable mass.Journal of Applied Mechanics,1993,60(4):954~958

    • [22] 梅凤翔.约束力学系统的对称性与守恒量.北京:北京理工大学出版社,2004(Mei F X.Symmetry and conserved quantities of constrained mechanical systems.Beijing:Beijing Institute of Technology Press,2004(in Chinese))

    • [23] Jiang W A,Liu K,Zhao G L,et al.Noether symmetrical perturbation and adiabatic invariants for disturbed non-material volumes.Acta Mechanica,2018,229(12):4771~4778

    • [24] Jiang W A,Liu K,Xia Z W,et al.Mei symmetry and new conserved quantities for non-material volumes.Acta Mechanica,2018,229(9):3781~3786

    • [25] Liu K,Gao Y,Jiang W A,et al.Conformal invariance and conserved quantities of nonmaterial volumes.Reports on Mathematical Physics,2019,84(3):365~373

    • [26] 梅凤翔.高等分析力学.北京:北京理工大学出版社,1991(Mei F X.Advanced analytical mechanics.Beijing:Beijing Institute of Technology Press,1991(in Chinese))

  • WeChat

    Mobile website