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Nonlinear Dynamics and Vibration Characteristics of PVC Gel Cylindrical Shell
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Abstract This paper investigates the nonlinear dynamic behavior of PVC gel cylindrical shell under mul-
tiple electromechanical parameters. First, the nonlinear vibration equations of the cylindrical shell struc-
ture are theoretically derived based on the Gent hyperelastic material model, and the response and stabil-
ity of the system under static and dynamic voltages are subsequently discussed. Studies on static voltage
reveal that the cylindrical shell exhibits a critical voltage threshold because of the positive feedback effect of the e-
lectric field. Exceeding this threshold leads to instability and damage. And the critical voltage is greatly influ-
enced by thickness and boundary conditions. When dynamic sinusoidal voltage is applied, the system shows
complex nonlinear vibration characteristics. Through analyses of the time-domain responses, phase trajectories,
Poincaré sections, bifurcation characteristics and Lyapunov exponents, the presence of periodic vibra-
tions and bifurcation phenomena is confirmed. Numerical simulations show that multi-frequency reso-
nance occurs when the excitation frequency changes. Such resonance induces amplitude jumps, which
leads to structural damage. By combining nonlinear verification at the same frequency with phase dia-

gram analysis, it is shown that the vibration state has regular consistency under specific parameters.
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This finding confirms that the vibration response can be controlled by adjusting voltage parameters.
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Fig. 1 Cylindrical shell structure before and after deformation
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Fig. 5 The response curve of vibration amplitude versus excitation frequency for a cylindrical shell
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