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A MEMS Modal Localization Sensing Method Based on Broadband Noise Excitation”
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Abstract Modal localization, owing to its high sensitivity to structural perturbations, has demonstrated
unique advantages in the field of microelectromechanical systems (MEMS) sensors. However,
traditional modal localization resonators mostly rely on frequency-swept excitation, which can only
stimulate a single mode and suffer from poor amplitude stability in open-loop operation as well as insta-
bility issues in dual closed-loop driving. These limitations hinder the realization of real-time measure-
ment and fast response. To address this challenge, this paper investigates a coupled double-beam resona-
tor and proposes a modal localization sensing method based on broadband noise excitation. The proposed
method drives multiple modes simultaneously using broadband noise and extracts the variation character-
istics of the modal energy distribution through power spectral density analysis, enabling efficient and
sensitive perturbation detection. A coupled dynamic model of a dual beam MEMS resonator under broad-
band noise excitation is established, and numerical simulations together with experimental studies are
conducted to comparatively analyze the modal responses under frequency-swept and noise-driven excita-
tions. The results show that the modal localization effect under broadband noise driven conditions is

highly consistent with that under harmonic driving, thereby verifying the feasibility and effectiveness of
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