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摘要 本文研究了非高斯随机激励下风力涡轮机系统(WTS)的动态响应.
 

首先,针对传统高斯噪声在描述

实际风速与系统不确定性方面的不足,引入具有重尾和脉冲特性的α-stable
 

Lévy
 

噪声,建立更符合实际的

WTS随机动力学模型.
 

其次,基于随机微分理论,推导了α-stable
 

Lévy噪声激励下 WTS对应的分数阶

Fokker-Planck-Kolmogorov(FPK)方程,该方程精确描述了系统状态瞬态概率密度函数(PDF)的演化规律.
最后,为有效求解这一高维分数阶偏微分方程,提出了物理信息神经网络(PINNs)框架,将物理控制方程作

为约束嵌入损失函数,无需网格离散即可直接学习时空连续的PDF解.数值实验表明,PINNs解与蒙特卡

洛模拟结果高度吻合,验证了该方法在求解分数阶FPK方程方面的精确性.同时,PINNs展现出远超蒙特

卡洛模拟方法的计算效率.
 

关键词 风力涡轮机系统, 分数阶FPK方程, PINNs算法, 非高斯噪声, 概率密度函数
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Abstract This
 

paper
 

studies
 

the
 

dynamic
 

response
 

of
 

wind
 

turbine
 

systems
 

(WTS)
 

under
 

non-Gaussian
 

stochastic
 

excitation.
 

Firstly,
 

considering
 

the
 

limitations
 

of
 

traditional
 

Gaussian
 

noise
 

in
 

representing
 

the
 

actual
 

wind
 

speed
 

and
 

system
 

uncertainty,
 

the
 

α-stable
 

Lévy
 

noise
 

with
 

heavy
 

tail
 

and
 

pulse
 

characteris-
tics

 

is
 

introduced
 

to
 

establish
 

a
 

more
 

practical
 

WTS
 

stochastic
 

dynamical
 

model.
 

Secondly,
 

based
 

on
 

the
 

theory
 

of
 

stochastic
 

differential,
 

the
 

fractional
 

Fokker-Planck-Kolmogorov
 

(FPK)
 

equation
 

corr
esponding

 

to
 

WTS
 

under
 

the
 

excitation
 

of
 

α-stable
 

Lévy
 

noise
 

is
 

derived,
 

which
 

precisely
 

describes
 

the
 

evolution
 

law
 

of
 

the
 

transient
 

probability
 

density
 

function
 

(PDF)
 

for
 

the
 

system
 

state.
 

Finally,
 

to
 

effec-
tively

 

solve
 

the
 

fractional
 

partial
 

differential
 

equation,
 

a
 

physics-informed
 

neural
 

networks
 

(PINNs)
 

framework
 

is
 

proposed,
 

which
 

takes
 

the
 

physical
 

control
 

equation
 

as
 

the
 

constrained
 

embedding
 

loss
 

function,
 

and
 

can
 

directly
 

learn
 

the
 

space-time
 

continuous
 

PDF
 

solution
 

without
 

grid
 

discretization.
 

Nu-
merical

 

experiments
 

show
 

that
 

the
 

PINNs
 

solution
 

is
 

highly
 

consistent
 

with
 

the
 

Monte
 

Carlo
 

simulation
 

results,
 

which
 

verifies
 

the
 

accuracy
 

of
 

this
 

method
 

in
 

solving
 

fractional
 

FPK
 

equations.
 

Meanwhile,
 

PINNs
 

shows
 

much
 

higher
 

computational
 

efficiency
 

than
 

traditional
 

Monte
 

Carlo
 

methods.
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引言
  

风力发电作为清洁能源利用的主要形式,其运

行稳定性对电力系统可靠供电至关重要.现有研究

多基于确定性模型,系统分析了风力涡轮机(WT)

的功率输出问题,涉及系统建模[1]、稳定性分析[2]、

最优控制[3,4]以及非线性动力学行为研究[5]等方

面.然而,在实际运行环境中,风速的随机波动、执
行器与传感器故障、测量噪声等多重不确定性因

素,使得风力涡轮机系统(WTS)在材料属性、负载

参数与几何结构等方面存在显著的未建模动态或

参数失配[6].因此,深入研究含不确定性因素的

WTS的动态特性,对提升 WTS可靠性与控制性

能具有重要理论价值与工程意义.
 

在 此 背 景 下,Fokker-Planck-Kolmogorov
(FPK)方程作为描述系统状态概率演化的数学工

具,为分析随机激励下系统动态响应提供了有效途

径[7].法国数学家 Paul
 

Lévy于1925年提出的

Lévy分布是一类广义的非高斯随机过程,广泛用

于描述布朗运动与泊松过程之外兼具小扰动与大

跳跃特征的复杂随机现象.在非高斯Lévy噪声[8]

激励下,系统对应的FPK方程表现为分数阶或积

分微分形式,难以直接求得其解析解[9].
 

Liu等[10]

提出将空间分数阶FPK方程转化为常微分方程,

并采用反向差分格式进行数值求解,显著提升了计

算效率,然而该方法对系统维度敏感,高维扩展性

有限.近年来,路径积分方法(PI)的发展为该类方

程的求解提供了新视角[11,12],其通过路径空间离

散化实现数值近似,具备处理非线性和非高斯激励

的潜力,但计算量随维度提升急剧增大.近年来,分
数阶FPK方程的数值求解方法取得了显著进展,

多种高效、适应性强的数值算法相继涌现[13].总体

而言,传统数值方法在处理高维FPK方程时普遍

面临“维数灾难”与计算效率的矛盾,而机器学习方

法通过融合数据驱动与物理约束,展现出突破该瓶

颈的潜力,但在训练效率、泛化能力与可解释性方

面仍需深入探索.
   

综上所述,本文在 WTS中同时考虑确定性故

障与α-stable
 

Lévy噪声扰动,该建模方式源于实

际系统中执行器性能衰退、参数摄动等确定性因素

与风速突变、测量干扰等随机因素共存并相互耦合

的工程现实.与传统高斯噪声相比,α-stable
 

Lévy
噪声凭借其重尾特性,能够更真实地表征系统的小

幅波动与大幅跳跃行为,尤其适用于描述风电场中

的极端风速波动与突发扰动.本文采用FPK方程

作为分析工具,重点研究α-stable
 

Lévy噪声激励

下系统的概率演化特性,并基于物理信息神经网络

(PINNs)进行数值求解,以实现对系统随机响应的

精确估计,为风力涡轮机可靠性设计与控制策略优

化提供一定支持.
 

1 风力涡轮机系统建模
  

本节系统阐述了 WTS的气动学建模基础、液
压变桨系统的空气动力学建模,以及变桨执行器故

障模式的数学表征.在此基础上,进一步引入了随

机扰动,并严格推导了描述系统状态概率密度演化

的分数阶FPK方程.
 

1.1 风力涡轮机气动建模
  

WT转矩和输出功率可以用 WTS的空气动

力学描述如下[6,14,15]:

Paero=
1
2ωg

ρaπR2Cp(λ,β)v3
r , (1)

Taero=
1
2ωr

ρaπR2Cp(λ,β)v3
r , (2)

Cp(λ,β)=0.5176
116
λi

-0.4β-5  e-
21
λi

 

,(3)

1
λi

=
116

λ-0.08β
-
0.035
β3+1

. (4)

其中,ρa为空气密度,R 为风轮半径,ωg 是转速,vr
为风速,ωr 为风轮角速度,λ 为叶尖速比,β为桨距

角.Cp(λ,β)表征了风能到机械能的转换效率,其
非线性特性是系统控制的关键挑战.

 

1.2 变桨系统建模
  

变桨系统通过调节桨叶角度实现功率控制,该
系统可用二阶动力学模型描述为[16]:

β
··
(t)= -ω2fβ(t)-2ωfξdβ

·
(t)+ω2fβref(t-td),

(5)
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式中,ωf变桨执行器固有频率,ξd 为阻尼比,βref为

参考桨距角,td 为传输延迟.系统需满足物理约束:

  βmin≤β≤βmax,
 

β
·

min≤β
·
≤β

·

max. (6)

1.3 变桨执行器故障建模
  

变桨系统故障主要包括动态特性故障和性能

退化故障两类.
(1)动态特性故障
   

液压系统参数摄动导致的故障模型[17-19]:

 β
··
(t)=-ω2

fβ(t)-2ωfξdβ
·
(t)+

 ω2
fβref(t-td)+ΔD. (7)

其中,ΔD 为参数不确定性项,综合表征固有频率

和阻尼比的偏移影响:

 ΔD= -γ1Δ(ω^2f)β(t)-2γ2Δ(ω
^
fξ
^
d)β
·
(t)+γ1Δ(ω^2f),

 Δ(ω^2f)=ω2
f,HL-ω2

f,N,

 Δ(ω^fξ
^
d)=ωf,HAξd,HA-ωf,Nξd,N,

式中,γ1、γ2 为权重因子.
(2)性能退化故障
  

执行器效率下降和偏置故障模型[15,19]:

βp(t)=ζβref(t)+ϕ, (8)
其中,βp(t)是俯仰执行器的控制输入,ζ∈ [0,1]
为效能因子(1表示正常,0表示完全失效),ϕ 为偏

置故障.最终,执行器的动态变化不确定性和性能

退化故障的综合故障模型可表示为

β
··
(t)=-ω2

fβ(t)-2ωfξdβ
·
(t)+

 ω2
f[ζβref(t-td)+ϕ]+ΔD . (9)

1.4 随机风力涡轮机系统建模
  

为描述系统突发性故障和强扰动,引入α-sta-
ble

 

Lévy噪声:

β
··
(t)=-ω2

fβ(t)-2ωfξdβ
·
(t)+ΔD+

 ω2
f(ζθ+ϕ)+Wη(t), (10)

其中,Wη(t)表示对称的α-stable
 

Lévy噪声,即对

称的α-stable
 

Lévy运动 {η(t),t≥0}的形式导

数,式(9)中βref(t-td)=θ.令x =[β,β
·
]T =

[x1,x2]T,则方程(10)改写为

x·1=x2,

x·2=F(x)+GWη(t) , (11)

其中

F(x)=
f1

f2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

=
x2

-ω2
fx1-2ωfξdx2+ΔD+ω2

f(ζθ+ϕ)
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

G=
0 0
0 1
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,Wη(t)=

0
Wηα

(t)
􀭠

􀭡
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 ,x0=

β0

β
·

0

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 .

其特征函数满足:

Ψ(k)=E{exp[ikWη(t)]}=exp[-Dηαtk α],

(12)

其中,Dηα =σα 是噪声强度,ηα(t)的特征函数为

δΨμα
(k,δt)=exp[-δtDηα k α]. (13)

1.5 具有Lévy噪声激励 WTS的分数阶FPK方程
  

本节基于 WTS
 

(10)所描述的马尔可夫过程

β(t),从查普曼-科莫戈罗夫-斯莫鲁霍夫斯基

(CKS)方程出发,结合特征函数理论,推导了对应

的分数阶FPK方程[11,12,20].
  

对于任意的δt>0,我们有

p(x,t+δt|x0,t0)

 =∫p(x,t+δt|y,t)p(y,t|x0,t0)dy,(14)

其中,p(x,t+δt|x0,t0)和p(y,t|x0,t0)分别表

示在时间t+δt和t时刻的概率密度函数,其中

x(t0)=
 

x0 作为初始条件,p(x,t+δt|y,t)表示

从时间t到t+δt以及位置y到x 的转移概率密度

函数.通过逆傅里叶变换,转移概率密度函数p(x,

t+δt|y,t)可以表示为

 p(x,t+δt|y,t)=ζ-1 δΨx(k,δt|y,t)  

=
1
2π∫

+�

-�
exp-ikT(x-y)  expδKx(k,δt|y,t)  dk,

(15)

式中,δKx(k,δt|y,t)表示累积生成函数,将公

式(15)代入(14),可得

p(x,t+δt|x0,t0)

 =
1
2π∫

+�

-�
exp -ikT(x-y)  dk×

∫
+�

-�
exp[δKx(k,δt|y,t)]p(y,t|x0,t0)dy.

(16)

令δt=0,则公式(11)可得

p(x,t|x0,t0)

 =
1
2π∫

+�

-�
exp -ikT(x-y)  dk×

∫
+�

-�
p(y,t|x0,t0)dy. (17)

96



动 力 学 与 控 制 学 报 2026年第24卷

用式(16)减去式(17),得到

 p(x,t+δt|x0,t0)-p(x,t|x0,t0)

=
1
2π∫

+�

-�
exp[-ikT(x-y)]dk×

 ∫
+�

-�
expδKx(k,δt|y,t)  -1  p(y,t|x0,t0)dy

=∫
+�

-�
ζ-1 δKx(k,δt|y,t)  p(y,t|x0,t0)dy+o(δt2)

= -∫
+�

-�∑
2

i=1

∂
∂(xi-yi)

fiδ2t(x-y)p(y,t|x0,t0)dy-

 ∫
+�

-�∑
2

i=1

∂α

∂xi
α Gi

αδ(x-y)δtDηαp(y,t|x0,t0)dy

=-δt∑
2

i=1

∂
∂xi

fi(x,t)p(y,t|x0,t0)+

 δt∑
2

i=1
Dηα

∂α

∂xi
α Gi

αp(y,t|x0,t0). (18)

式(18)取极限,我们可得到 WTS
 

(7)对应的分数

阶FPK方程为

∂
∂tp
(x1,x2,t)

 =-
∂
∂x1

f1p(x1,x2,t)-
∂
∂x2

f2p(x1,x2,t)+

Dηα

∂α

∂x2
αp(x1,x2,t). (19)

  

初始和边界条件如下

 p(x,t|x0,t0)=δ(x-x0)=δ(x-x0)(y-y0),

 p(x,t)=p(x1,x2,t)=0.

2 方法论
  

针对α-stable
 

Lévy噪声激励下 WTS分数阶

FPK方程的求解需求,本文构建PINNs框架,求
解分数阶FPK方程.PINNs的核心优势在于无需

网格离散,直接将分数阶FPK方程作为硬约束嵌

入损失函数,同时结合初始、边界条件实现端到端

的数值求解,有效规避传统蒙特卡洛方法面临的
 

“维数灾难”.

2.1 PINNs网络结构设计
  

PINNs
 

采用全连接神经网络逼近系统状态的

概率密度函数p(x1,x2,t),网络输入为时空变量

[x1,x2,t],输出为对应时刻的概率密度值.网络

结构包含
 

3
 

个输入节点、3
 

层隐藏层(每层
 

32
 

个神

经元)和
 

1
 

个输出节点,具体设计如下:
(1)输入层:接收时空变量x1∈[-2,2]、x2 ∈

[-2,2]、t∈ [0,1](时间域),共
 

3
 

个输入维度;
(2)隐藏层:采用

 

ReLU
 

激活函数(计算效率

优于传统
 

tanh,且能缓解梯度消失问题),每层神

经元数量设为
 

32;
(3)输出层:p(x1,x2,t),确保输出范围与物

理意义一致.

2.2 分数阶导数的数值离散方法
  

针对分数阶
 

FPK
 

方程中的分数阶导数,采用
 

Grünwald-Letnikov(GL)离散化方法实现数值计

算,且离散格式与PINNs的自动微分框架兼容性

良好.对 于 一 维 空 间 变 量 x2 的 分 数 阶 导 数

∂α

∂x2
αp,GL离散公式为

∂α

∂x2
αp≈

1
hα∑

N

k=0
ωkp(x2-kh), (20)

其中,h 为离散化步长,N 为截断项数(确保截断误

差小于10-4),ωk 为GL权重,递归计算式为

ω0=1,
 

ωk =ωk-1×
k-1-α

k
 

(k≥1).(21)

2.3 损失函数构建
  

PINNs
 

的损失函数由初始条件损失、边界条

件损失和分数阶
 

FPK
 

方程残差损失(物理约束)三
部分组成,通过加权求和实现联合优化,总损失函

数定义为:

Λ=ωiΛ0+ωjΛb+ωsΛFPK, (22)

其中,ωi、ωj、ωs 为权重,采用1∶1∶1的默认比

例,该比例在同类
 

PINNs
 

求解偏微分方程的研究

中被广泛验证有效[21].Λ0、Λb、ΛFPK 定义如下:

Λ0=
1
N0
∑
N0

i=1
p^(x0

1,x0
2,t)2,

Λb=
1
Nb
∑
Nb

i=1
p^(xb

1,xb
2,t)2,

ΛFPK=
1
NF
∑
NF

i=1
p^(xF

1,xF
2,t)2, (23)

其中,N0、Nb、NF 分别表示训练数据集中初始点、

边界点和配置点的数量.

3 数值结果
  

本节通过数值实验验证所提PINNs方法在求

解α-stable
 

Lévy噪声激励下 WTS分数阶FPK方

程的有效性.所有计算采用Python
 

3.8和Tensor-
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Flow
 

2.6框架实现,实验硬件环境为12th
 

Gen
 

In-
tel(R)

 

Core(TM)
 

i7-12700
 

(2.10
 

GHz)、内存
 

64
 

GB.WTS系统参数设置如下:变桨执行器固有频

率ωf=1.0
 

rad/s,阻尼比ξd=0.1,故障权重因子

γ1=0.5,γ2=0.3,参考桨距角系数ζ=0.2,参考

桨距角θ=0.3
 

rad,偏置故障ϕ=0.1.噪声强度D=
0.05,α=1.8[15].采用 Adam 优化器,学习率为

0.001,训练轮数10
 

000.
   

图1展示了的两种方法得到的概率密度函数

结果,从图1中可知,PINNs解与蒙特卡洛(MC)
解在概率密度分布特征上表现出高度一致性,充分

验证了PINNs解的有效性和准确性.具体而言,两
种方法得到的概率密度函数均呈现出以坐标原点

(0,0)为中心的尖锐峰值分布特征,峰值高度均位

于0.6~0.7范围内,且颜色渐变模式吻合程度比

较高.在空间分布形态上,PINNs解与 MC解的形

状和扩散范围基本一致,仅在极边缘区域存在微不

足道的数值差异.这种高度吻合的分布模式表明

PINNs成功捕捉到了Lévy噪声激励下 WTS系统

的核心统计特性,其解的精度已达到与传统 MC方

法相当的工程实用水平.
 

图1 不同方法求解的概率密度函数

Fig.1 The
 

PDF
 

solved
 

by
 

different
 

methods
 

图2是x1 和x2 方向的边际概率密度函数图,

可以清晰地观察到PINNs方法与蒙特卡洛方法在

拟合效果上表现出高度的一致性.在x1 方向截面

图中,虽然曲线形态相对复杂且随时间演化特征明

显,但PINNs解与 MC解仍然保持了极佳的一致

性,特别是在概率密度峰值区域和分布尾部都展现

了几乎完全重合的分布特征.在x2 方向截面图中,

两种方法得到的概率密度曲线在各个时间点(0.1
 

s、

0.25
 

s、0.5
 

s、0.75
 

s、1.0
 

s)均呈现出完美的重叠

状态,曲线形态完全吻合且峰值位置精确对应.这
种高度吻合的拟合效果不仅体现在曲线整体形状

的匹配上,更表现在具体数值的精确对应.两种方

法计算得到的概率密度值在各个坐标点上的差异

极小,充分证明了PINNs方法在求解Lévy噪声激

励下分数阶FPK方程中的有效性和可靠性.
  

图2 WTS系统的边际概率密度函数
Fig.2 The

 

marginal
 

probality
 

density
 

of
 

WTS
 

system

图3展示了不同噪声强度D(0.05~0.7)对

WTS概率密度分布的显著影响.当D=0.05时,概
率密度分布呈现高度集中的狭长椭圆形态,表明系

统在低噪声下状态分布集中且稳定性强.随着D 增

大至0.1,分布开始扩散,椭圆形态渐趋圆润.当D=
0.2和0.7时,分布进一步从椭圆变为近圆形,且颜

色从红色渐变为黄色,清晰揭示了噪声强度增加会

导致系统不确定性增强、状态分布分散化的规律.
图4展示了不同稳定性参数α 对 WTS概率

密度分布的显著影响.当α=0.1时,概率密度分布

呈现高度集中的狭长椭圆形态且峰值最高,表明系
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统状态分布最为集中且稳定性最强.随着α增大至

0.5,分布开始扩散且峰值降至约0.24,椭圆形态

渐趋圆润.当α 为1和1.5时,分布进一步从椭圆

转变为近圆形,且高概率区域(黄色)范围明显扩

大,清晰揭示了α 增加会导致系统不确定性增强、

状态分布分散化的规律.

图3 不同噪声强度下 WTS系统的概率密度演化

Fig.3 The
 

evolution
 

of
 

PDF
 

for
 

WTS
 

under
 

different
 

noise
 

intensities

图4 不同稳定性参数下 WTS系统的概率密度演化
Fig.4 The

 

evolution
 

of
 

probality
 

density
 

for
 

WTS
 

under
 

different
 

stability
 

parameters
  

从表1可以清晰地观察到PINNs方法在计算

效率方面展现出显著优势.具体而言,PINNs方法

的计算时间仅为1.3
 

s,而传统蒙特卡洛方法需要

65.6
 

s,前者比后者快约50倍.在内存占用方面,

PINNs仅消耗0.05
 

MB内存,而 MC方法需要

14.34
 

MB,内存效率提升近287倍.这种巨大的性

能差异源于两种方法的核心机制不同,蒙特卡洛方

法依赖于大量随机采样和统计平均,计算量随精度

要求呈指数级增长.而PINNs通过将物理约束嵌

入神经网络损失函数,实现了对控制方程的端到端

学习,避免了重复采样过程.值得关注的是,PINNs
在保持高精度的同时(如图1、图2中与 MC方法

的高度吻合),将计算资源消耗降低了两个数量级,

这为解决高维分数阶FPK方程中的“维数灾难”问
题提供了有效途径.

 

表1 不同方法性能对比

Table
 

1 Performance
 

comparison
 

of
 

different
 

methods

方法 计算时间/s 内存占用/MB

PINNs 1.3 0.05

MC 65.6 14.34

4 结论
  

本文针对非高斯Lévy噪声激励下的风力涡轮

机系统,建立了分数阶FPK方程的理论框架,并提

出了基于PINNs的高效数值求解方法.主要结论

如下:
(1)理论贡献方面,将α-stable

 

Lévy噪声引入

WTS建模,推导了相应的分数阶FPK方程,丰富

和拓展了非高斯随机激励下风电系统动力学理论

分析方法.该方程能够同时刻画系统的小幅波动和

大幅跳跃行为,更符合实际风电场运行环境.
 

(2)方法创新方面,设计的PINNs框架成功解

决了分数阶FPK方程的高维求解难题.通过将物

理约束嵌入损失函数,实现了时空连续概率密度函

数的端到端学习,避免了传统数值方法的网格离散

和维数灾难问题.数值实验表明,该方法在计算效

率上较传统方法提升许多倍,计算资源消耗降低了

两个数量级.
   

然而,本研究仍存在一些局限性:首先,当前模

型未考虑多故障同时发生的情形.其次,PINNs训

练过程的收敛性保障需要进一步理论分析.未来工

作将围绕以下方向展开:(1)扩展至多自由度 WTS
模型;(2)研究自适应PINNs框架以提升训练稳定

性;(3)结合实时监测数据开发数据-物理融合的

故障诊断方法.
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