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Abstract This paper studies the dynamic response of wind turbine systems (WTS) under non-Gaussian
stochastic excitation. Firstly, considering the limitations of traditional Gaussian noise in representing the
actual wind speed and system uncertainty, the a-stable LLévy noise with heavy tail and pulse characteris-
tics is introduced to establish a more practical WTS stochastic dynamical model. Secondly, based on the
theory of stochastic differential, the fractional Fokker-Planck-Kolmogorov (FPK) equation corr
esponding to WTS under the excitation of a-stable LLévy noise is derived., which precisely describes the
evolution law of the transient probability density function (PDF) for the system state. Finally, to effec-
tively solve the fractional partial differential equation, a physics-informed neural networks (PINNs)
framework is proposed, which takes the physical control equation as the constrained embedding loss
function, and can directly learn the space-time continuous PDF solution without grid discretization. Nu-
merical experiments show that the PINNs solution is highly consistent with the Monte Carlo simulation
results, which verifies the accuracy of this method in solving fractional FPK equations. Meanwhile,

PINNs shows much higher computational efficiency than traditional Monte Carlo methods.
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