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A Study on Dynamic Reduction and Vibration Behavior of Bladed Disks
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Abstract In response to the challenge of efficient prediction of the dynamic behavior of the dovetail-con-
nected bladed disk systems involving boundary nonlinearity, rotating effects, complex loads, etc. , the
fixed interface modal synthesis method is applied to the reduced-order modeling of a rotating dovetail-
connected bladed disk system. By introducing thin-layer solid elements on both groove and tenon contact
surfaces to capture interference behavior, and considering the rotation-induced stiffening and softening
effects as well as the dovetail joint-induced local load action, the reduced system-level model including
the disk substructure, dovetail joint zone., and blade substructure under aerodynamic excitation is then

established. The influence of the modal truncation numbers of the blade and disk on the first three natu-
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ral frequencies of the reduced system is discussed, and the effects of rotating speed and friction coeffi-
cient on the modal characteristics and vibration responses of both the full and reduced models are com-
pared with each other. The results show that: (1) within the studied parameter range, the maximum
deviation of the reduced model in predicting the first three natural frequencies compared to the full model
does not exceed 0. 6%, and the maximum deviation in predicting the critical speed does not exceed 0.
1% (2) the nonlinearity of the dovetail connection makes the response spectrum of the system to exhib-

it multiples of the excitation frequency, and a smaller friction coefficient induces slip between the tenon

and the groove thus leading to a quasi-linear component in the vibration response.
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x1 2EBMBEEBGT 3SMEEMEWL (j,=9, j.=1)

Table 1  First three natural frequency comparisons (j,=9, j,=1)

Rotate speed n=4000 r/min n=20 000 r/min

order Full model/Hz Reduced model/Hz  Error (%) Full model/Hz Reduced model/Hz  Error (%)
S 645.3 645. 4 0.02 962. 8 962.9 0.01
[ 1772.3 1772.8 0.03 2026. 4 2028.7 0.11
f3 2016.0 2016. 6 0.03 2211.2 2208. 4 —0.13
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Table 2 The influence of disk stiffness on the natural
frequency of the bladed disk with a dovetail fixture

Rotate . .
d 7n=4000 r/min n=20 000 r/min

S

PEC Flexible disk  Rigid disk  Flexible disk  Rigid disk
order
fi/Hz 6453 654. 1 962. 8 977.3
f,/Hz  1772.3 1914. 4 2026. 4 2063. 1
fy/Hz  2016.0 2072. 1 2211. 2 2481. 6

(b) RIPEHE 4
(a) Flexible disk (b) Rigid disk
RO A D2 X M 3 I 8 2R 0 e ik s g 5
Fig. 9 The influence of Disk Stiffness on the comtact pressure
of the bladed disk with a dovetail fixture
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