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Structural Optimization of Nextel/Kevlar-Filled Protective Structures

under Hypervelocity Impact for Spacecraft”
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Abstract A numerical model of a Nextel/Kevlar-filled protective structure under hypervelocity impact is
developed to investigate its structural response and optimize its configuration. Four key design parame-
ters, namely the thicknesses of the front plate, Nextel and Kevlar layers, and rear plate, are chosen as
variables. Latin hypercube sampling is employed to generate sample points, and high-fidelity simulations
are carried out using LS-DYNA to obtain the projectile’s kinetic energy dissipation. A Kriging surrogate
model is built to approximate the simulation response with reduced computational cost. Based on the
surrogate, a multi-objective optimization using the NSGA-II algorithm is performed, aiming to minimize
the areal density and maximize energy dissipation. The optimized structure achieves a 2. 56 % reduction

in areal density and a 1. 91% increase in energy loss.
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Fig. 1 Nextel/Kevlar-filled protective structure

WA T £ 2% F % Nextel/Kevlar 3 78 2 B
P8R ) e A o R R AT TR AR i
55 iF 5% RN LM £ H WF 5% B > J7 T . Christiansen
LA X Nextel/Kevlar B 3745 ¥ 79 By 3 24 g 1F
17— REEmIEE . B ge. 5k

Nextel/Kevlar-filled protective structure,

space debris, space traffic, hypervelocity im-

multi-objective genetic algorithm

By ER AR VR R o — 2 v R I A5 A AR 1 ] Nex-
tel/Kevlar &G # BHE 9 58 — 22 vb )2 19 31 58 X By
PoE R AR B A 12 km /s BT L X2 IR R
A e R o R B RO B B B 1 BB 2001 4R
NASA {# Christiansen A& Kerr %5 P& T
BI Xt Nextel/Kevlar 3 75 2 B 47 45 14 8 w5 o 1 5
PR A 19 1 30 BF Y. 38 43 X b 2 AT & B, Nextel P %
A VS G2 i 2 AH L A5 B Y 28 B BR Al B A ALY
T W T 7 0 B 3P R0 5 AR 25 4 R 8 A B HIR AR 1 A%
17 mm R BE 7 km/s B4R BRI AL A & el i . b
4b, 7 KH| Alenia Aerospazio ilFZE H1.0> ) Destefa-
nis, Faraud % 5% FH A0 56 7 0 x5 70 X B
P2t i) R e R G R RE AT 1RSI A R R
WY Y REEGE W o 1 S R R AR 5
Az 21 /NS0 R B BB MR AR TR 5 i Bl e AR TR AR
FAL BB R 2 D) B AT BE A S A b B Y b
2 AL IF B A /N SRS S A o0 A

F 25 i i 6 2% A 1 R A L 2R A7 R e e < 1
BRI, 15 11 6 2% K& 09 AN J1 . 9 1 W Iy Fnisg
(i) PR 0H 308 o 5 A5 400 1) 7 i, A 008 vy o i o o
i, e —Fh AT R 20 B 19 T B L % T 00 4 B
5¢,2001 4, Hayhurst ™ if — 2 7 & T #H 7o A By
A BUE 05 B TAE R A BT T Nextel/Kev-
lar AR A AG 455 8 500K 25 O7 B AR R L JR R TR
I AUTODYN #{F i) 't 1 6L it 1A 3l g 27
(smoothed particle hydrodynamics , SPH) % % ik
AT, A B 2 Kevlar #108FG1 AL BRARZS 7 R AR
AR AT Aol K500 0 2 o 000 A o e o 3 i
BN 4. 2006 4F ., Clegg %) %t 421 75 20 By 37 45
4 1 R e A o PR e R T AU (5 A AR, I ekt
T Nextel MR, 5 NASA 155 & o B &4 F
BRI 45 A b, o A R R Ar Wy &
JE. 1E e =L R PAM-SHOCK #54: % 1 o 7
FEZ) R 3 km/s S50 N I XUZ MR H 64T T e il
b BUE AL, BT AR R AR 1 AR S a0 B e
— B, UG E T 0 LA SR A M SO SR
ZARPRIUA T7 ik 5 J o I R BE B BR 7 AR R B A
A1 3 70 B e 45 ) 1% 5L R R A A L B o
T SRR W T T 5 R ORGSR



28 & 4 %5

B O % W 2026 4E5 24 &

RSO SE 7 Nextel/Kevlar 1 78 =X B 97 45
) P v A o ASE TR 0 5 BR T 38 AL R [ B 25 A
FAEBE T2 (8] v e B 3 I REA S HEAT 05 ELAR AL,
52 05 B I 0k B 45 # HR R AR L Nextel SH 7T )2 .
Kevlar 3 78 )2 15 H i9 J5 BE DY A4S 45 4 2 500E b
A 2 BT B A5 2 1 BR T 58 04 B0 B8 2k 1 o
W, Kriging 5 ¥ 88 57 AQ B 8, 3 L) py A4~ 2%
F BBV AL 7 B L DL B/ N 3 78 20 485 4 1) T 4%
JE B ORARERIE 3L Y 2 BE 40 R AR Ak B AL R
M2 H #5555 1 (NSGA- 1) #E 47 45 #9400 1k %
T A B0 1k 25 S 1 f A A, o BR ABF5E Nextel/
Kevlar 7 4725 ¥4 (1) 48 15 o $8 o 40 1k S H 25 04 1 1k
AL TR 1 S

1 Nextel/Kevlar (i P 518 5 # E H &
BWEL

1.1 JL{THEs

8 e B o A Y A 4 BROE I Nexctel/
Kevlar 3178 2B 371 45 1 P 73 2 . L, Nextel/
Kevlar 75 2B 571 45 14 /& 76 BUZ A B 47 25 48 1) 22
it CHI AR D A S M = ) 3 58 Nextel B % A #l
Kevlar £F 4 41 , B 5 0 ARG H S F AR [R] /9 44 8}, A
Bz Nextel HFJZ Kevlar 75 2 DL K J5 4 & BE 4
BN £ttty QTR 2 FFR.

front plate

[ 114

Nextel filling layer

[t
[ [ &

Kevlar filling layer

| |2

back plate

2 Nextel/Kevlar B4 45 14 JLA 52 21 R 22 14
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Table 1 Structural parameters of aluminum
alloy materials

IR 2 Ry
A/MPa 337
B/MPa 343
7 0.41
C 0.01
m 1
T,./K 877
T./K 293
00/(g+cm ?) 2.7
E/GPa 70
v 0.33
co/(mes ) 5320
S 1.34
%o 2
¢/(Jokg ' K™D 896

R2 HAMBENSH

Table 2 Structural parameters of filling materials

RS R Nextel Kevlar
00/(g s cm ) 3.05 1. 44
E/GPa 280 76

v 0.22 0. 36
A/MPa 120 75
E/MPa 140 10

c 0. 001 0.001
co/(mes 5000 2600
S 1.2 1.1

%o 0.9 0.5
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Table 3 Geometric parameters of Nextel/Kevlar structure
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Table 4 3 sets of simulated Nextel/Kevlar parameters

e A A 5 Nextel & Kevlar & J& M
J¥ /mm J¥ /mm & /mm J¥ /mm

1 1.00 0. 35 0.50 1.00

2 0. 86 0. 39 0.17 0. 85
3 1. 10 0.53 0.59 0.41
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Table 5 Nextel/Kevlar optimization variables
and value range
Pl &5 HHHME/mm TR /mm LR /mm
T EE L ¢ 1.00 0. 20 1.50
Nextel HITZERE ¢ 0.35 0. 20 1. 00
Kevlar S 78J2 R ¢« 0.50 0.10 1.50
JA BRI ¢, 1.00 0. 20 2.00

FETRLT S T Bt Or ik B T 20 AN HUE
JTEEERMEE 0. 2~1. 5 mm, Nextel HFEEJE
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MRJZRE 0. 2~2 mm BYFEA s #8110 56 25 6] 1%
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T A5 AN B TR S 8 BRI BBl P 8 DX ) 2 20 ) 43S
AT XA IR AE A DX TE] P BE AL B — S FE AR
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T A3 AR 20 ASFEAS gL AT BUE AL AL

P e o e R R B s R
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oy e I T AR IR 7 AR Y O A S R R L PR
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Table 6 Partial simulation values of Latin hypercube
experimental design

B t/mm og/mmot/mmof/mmo BhfgH % /K
YIE 1. 00 0. 35 0.50 1. 00 3.210

1 0.93 0.70 0.97 1.32 3. 250

2 1.15 0.56 0.74 1.02 3. 247

3 0. 86 0.90 1.32 1.77 3.248

4 1.47 0.43 0.51 0.73 3. 252
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Table 7 Random non sample point test value

8 1 2 3
t;/mm 1.34 1.22 1.19
ty/mm 0.51 0.46 0. 54
{x/mm 0.45 0. 64 0.68
t,/mm 0.43 0. 82 0.54
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Table 8 Nextel/Kevlar structural optimization value

2 Fefh Al 1 2 3
t¢/mm 1.00 1.09 0.93 0.93
ty/mm 0.35 0.53 0.57 0. 50
{/mm 0.50 0.41 0. 54 0.71
t,/mm 1.00 0.63 0.58 0.72

SBREHI L AL /K] 3.1148  3.2416  3.2255  3.2434
HMEEW LT EM /K] 3.2102  3.2119  3.2266  3.2716
1% —2.97% 0.92% —0.03% —0.86%
o/(gecm ) 0.71875 0.68776 0.65947 0.70035
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Fig. 7 Comparison chart of projectile kinetic energy changes

before and after optimization
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