基于 LQG 自校正器的机翼颤振主动抑制*

司益坡 赵永辉

(南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016)

摘要 研究了一种基于 LQG 自校正器的机翼颤振主动抑制设计方法. 以带有后缘控制面的柔性机翼为研究 对象,采用在线辨识来获取系统的时变参数,利用 Kalman 滤波器重构状态,通过求解离散时间代数 Riccati 方程得出机翼颤振主动控制律. 在 Simulink 仿真平台上实现了上述方法,仿真结果表明,该控制器能够有效 抑制机翼颤振的发生并具有一定的鲁棒性.

关键词 LQG 自校正, 参数辨识, 颤振主动抑制

引 言

颤振是飞行器升力面在结构变形与空气动力 交互作用下发生的自激振动现象,是飞行器结构动 强度中关心的重要问题之一.目前,有两类颤振抑 制方法:被动控制方法和主动控制方法.随着现代 控制理论的发展以及被动控制的局限性,主动控制 技术在飞行器颤振抑制中越来越受到重视.

在多种主动控制技术中,智能控制理论近年来 在气动弹性领域或得到了广泛的关注.杨仕福等以 一个大展弦比机翼为对象,研究了鲁棒控制来用于 机翼颤振主动抑制,并研究了控制效果与控制面数 目间的关系^[1].Zeng Jie 等人以 F/A - 18 主动柔性 机翼为对象,研究了自适应前馈控制的阵风减缓效 果^[2].目前智能控制研究还主要集中在二元翼段模 型上,对三维机翼开展自适应控制的研究还较少. 本文以一个带有后缘控制面(TEO)的三元柔性机 翼为对象,结合离散 LQG 控制,设计了一种 LQG 自校正调节器并应用于机翼颤振主动抑制中.数值 仿真结果表明,该方法能够有效提高机翼颤振速度 并具有一定的稳定裕度.

1 弹性机翼的时域状态空间方程

在控制面运动激励下,机翼气动弹性系统的开 环运动方程可写为

$$\begin{bmatrix} M_{\xi\xi}s^2 & M_{\xi\delta}s^2\end{bmatrix} \begin{cases} q\\ \delta \end{bmatrix} + \begin{bmatrix} D_{\xi\xi}s & 0 \end{bmatrix} \begin{cases} q\\ \delta \end{bmatrix} +$$

2011-08-02 收到第1稿,2011-08-11 收到修改稿. * 国家自然科学基金资助项目(10972100)

$$\begin{bmatrix} K_{\xi\xi} & 0 \end{bmatrix} \begin{cases} q \\ \delta \end{bmatrix} = q_d \begin{bmatrix} Q_{\xi\xi} s & Q_{\xi\delta} \end{bmatrix} \begin{cases} q \\ \delta \end{bmatrix}$$
(1)

式中, q_a 为动压. M_{ε} , K_{ε} 分别为模态质量阵和模态 刚度阵. M_{ε} 为控制面和结构模态之间的耦合质量 阵. Q_{ε} , Q_{ε} 分别为与模态位移、控制面偏转角有关 的空气动力矩阵.

将上式中的空气动力矩阵在 Laplace 域中采用 最小状态在近似之后,得到^[3]

$$\begin{bmatrix} Q_{\xi\xi}s & Q_{\xi\delta} \end{bmatrix} = \begin{bmatrix} A_{\xi\xi0}s \\ \vdots \\ A_{\xi\delta0} \end{bmatrix} + \frac{b}{V} \begin{bmatrix} A_{\xi\xi1}s \\ \vdots \\ A_{\xi\delta1} \end{bmatrix} s + \frac{b^2}{V^2} \begin{bmatrix} A_{\xi\xi2}s \\ \vdots \\ A_{\xi\delta2} \end{bmatrix} s^2 + D\left(Is - \frac{V}{b}\right) \begin{bmatrix} E_{\xi\xi}s \\ \vdots \\ E_{\xi\delta} \end{bmatrix} (2)$$

式中,V为气流速度,b为参考半弦长.

引进增广气动力状态变量,并把式(2)代入到 式(1)中,便得到如下时域状态空间中的开环气动 弹性方程

$$\begin{cases} \dot{X}_{ae} = A_{ae} X_{ae} + B_{ae} U_{ae} \\ Y_{ae} = C_{ae} X_{ae} + D_{ae} U_{ae} \end{cases}$$
(3)

伺服舵机是主动控制中控制系统的执行机构. 舵机一般采用三阶环节,将舵机传递函数转化成 状态空间方程形式

$$\begin{aligned} \dot{X}_{ac} &= A_{ac} X_{ac} + B_{ac} U_{ac} \\ Y_{ac} &= C_{ac} X_{ac} \end{aligned} \tag{4}$$

由式(3)和式(4)得到机翼开环状态空间方程 为

$$\begin{cases} \dot{X}_p = A_p X_p + B_p U_p \\ Y_p = C_p X_p \end{cases}$$
(5)

2 LQG 自校正器方法设计

2.1 变遗忘因子的最小二乘辨识

最小二乘估计是一种经典的数据处理方法,目 前已成为动态系统辨识的主要方法^[4].从机翼颤振 主动抑制的实际应用环境来看,机翼的气动弹性数 学模型的参数应具有时变特性.使用常规最小二乘 则会出现"数据饱和"现象.为了避免"数据饱和" 现象的发生,人们一般通过定义一个常遗忘因子 *β* 来降低老数据可信度的办法来修改算法,人为突出 当前数据作用,即为常规递推最小二乘估计.

显然模型辨识效果与遗忘因子有关.其值接 近于1时,跟踪参数变化效果不明显,而值偏小时, 跟踪速度有较大提高但是噪声的影响也会变大,参 数辨识效果也就不好.而常规递推最小二乘采用常 遗忘因子,显然不能更有效地追踪参数实时变化. 为了提高辨识效率,我们引入一种可变遗忘因子算 法.具体算法如下.

在递推过程计算中,每取得一组新数据 y_{N+1} , 就将以前的所有数据乘一个衰减因子 $\rho(0 < \rho < 1)$ 进行衰减,此时输出向量和由输入输出数据组成的 数据方阵为:

$$Y_{N+1} = \begin{bmatrix} \rho Y_N \\ y_{N+1} \end{bmatrix}, \Phi_{N+1} = \begin{bmatrix} \rho \Phi_N \\ \Phi_{N+1}^T \end{bmatrix}$$
(6)
$$P_{N+1} = (\Phi_{N+1}^T \Phi_{N+1})^{-1} = \begin{bmatrix} \rho \Phi_N \\ \rho \Phi_N \end{bmatrix}^{-1}$$

$$\left\{ \begin{bmatrix} \rho \boldsymbol{\Phi}_{N} & \boldsymbol{\Phi}_{N+1} \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \boldsymbol{\Phi}_{N+1}^{T} \end{bmatrix} \right\} = \left\{ \rho^{2} \boldsymbol{\Phi}_{N}^{T} \boldsymbol{\Phi}_{N} + \boldsymbol{\Phi}_{N+1} \boldsymbol{\Phi}_{N+1}^{T} \right\}^{-1}$$
(7)

用矩阵求逆引理推导有

$$P_{N+1} = \left(P_N - \frac{P_N \varphi_{N+1} \varphi_{N+1}^T P_N}{1 + \varphi_{N+1}^T P_N \varphi_{N+1}}\right)^{-1} \frac{1}{\rho^2}$$
(8)

定义遗忘因子 $\beta = \rho^2$,则引入遗忘因子的最小 二乘递推算法为

$$\begin{cases} \hat{\theta}_{N+1} = \hat{\theta}_N + K_{N+1} (y_{N+1} - \varphi_{N+1}^T \hat{\theta}_N) \\ K_{N+1} = \frac{P_N \varphi_{N+1}}{\beta + \varphi_{N+1}^T P_N \varphi_{N+1}} \\ P_{N+1} = \frac{1}{\beta} (I - K_{N+1} \varphi_{N+1}^T) P_N \end{cases}$$
(9)

式中, θ_N 为第 N 次辨识出的模型参数, φ_{N+1} 为由输出数据和输入数据组合而来的数据向量.上述方程中变遗忘因子 β 取值算法为

$$\beta(N) = \lambda_{min} + (1 - \lambda_{min})2^{L(N)}$$
$$L(N) = -NINT[p\alpha^{2}(N)]$$
(10)

式中, $\alpha(N) = y_N - \varphi_N^T \hat{\theta}_{N+1}$ 代表第 N 次估计误差. NINT[]是一个向最近的整数靠近的取整运算,p是限制遗忘因子大小的控制参数.从上式可以看出, 当误差 α 变大时, $2^{L(N)}$ 趋向于零,则遗忘因子趋近 于设定的下界,加快跟踪速度;反之 $2^{L(N)}$ 趋向于1, 保持当前状态.与常规递推最小二乘相比,该算法 所需计算步骤较少.下面给出一个仿真算例.

取含有噪声输入的对象模型为

$$\frac{Y(z)}{U(z)} = \frac{b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} + \xi$$
(11)

其中, ξ 为方差为 0.1 的白噪声,时变对象参数 θ (k) = [a_1, a_2, b_1, b_2]^T为

$$\theta(k) = \begin{cases} \begin{bmatrix} -1.2 & 0.6 & 0.7 & 1 \end{bmatrix}^T, k \leq 500 \\ \begin{bmatrix} -1 & 0.3 & 0.5 & 1.2 \end{bmatrix}^T, k > 500 \end{cases}$$

(12)

其表示在运算第五百步时参数有一个突变,应用变 遗忘因子最小二乘法进行参数估计后效果如图1 所示.可以看出该算法对于含有噪声输入的参数突 变系统也能有效进行估计.

当
$$k = 500$$
步时,参数估计值为
 $\hat{\theta}(500) = [-1.2057, 0.6028, 0.6862, 1.0107]^T$
当 $k = 1000$ 步时,参数估计值为
 $\hat{\theta}(1000) = [-0.9785, 0.2843, 0.4783, 1.2207]^T$
 $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{200}$ $\frac{1}{400}$ $\frac{1}{600}$ $\frac{1}{800}$ $\frac{1}{1000}$
 $\frac{1}{200}$ $\frac{1}{400}$ $\frac{1}{600}$ $\frac{1}{800}$ $\frac{1}{1000}$
 $\mathbb{B}1$ 变遗忘因子最小二乘法参数估计效果

with varying forgetting factor

2.2 LQG 控制器设计

设某模型采用带控制量的自回归模型(CAR 模型)表述,即

$$A(z^{-1})y(k) = z^{-d}B(z^{-1})u(k) + \xi(k)$$
(13)

辨识出模型参数后将其重写成观测器规范 形^[5]:

$$x(k+1) = A_0 x(k) + b_0 u(k) + k_0 \xi(k)$$

$$y(k) = c_0^T x(k) + \xi(k)$$
(14)

式中, A_0 、 b_0 、 k_0 、 c_0^T 是由辨识出的相关参数的组合 而成.

定义目标函数二次型性能指标为

$$J = \frac{1}{2} \sum_{k=0}^{\infty} (x^{T}(k) Qx(k) + u_{e}^{T}(k) Ru_{e}(k)) \quad (15)$$

其中,Q为对称正定矩阵,R为正标量.

对于式(14),使上述目标函数最小的容许控 制策略为

$$u(k) = -K^{T}(k)x(k)$$
(16)

式中,K可以通过下面的后退递归公式求得

$$K(k) = \left[R + b_0^T S(k+1) b_0 \right]^{-1}$$
(17)

实现最优控制律(16)时,需用全部状态向量. 而在这里其不能完全获得,故采用 Kalman 滤波器 重构状态.由式(14)不难看出,状态预测和滤波方 程具有下列形式:

$$\begin{cases} \hat{x}(k+1|k) = A_0 \hat{x}(k|k) + b_0 u(k) \\ \hat{y}(k) = c_0^T \hat{x}(k|k) \\ \hat{x}(k|k) = \hat{x}(k|k-1) + K_f [y(k) - c_0^T \hat{x}(k|k-1)] \end{cases}$$
(18)

定义预报误差

$$\tilde{x}(k) = x(k) - \hat{x}(k|k-1)$$
 (19)

将上述方程合并便得

$$\tilde{x}(k+1) = (A_0 - A_0 K_f c_0^T) \tilde{x}(k) + (k_0 - A_0 K_f) \xi(k)$$
(20)

因此,为保证误差方程稳定性可选 $k_0 = A_0 K_f$.

由(14)~(18)式可以推导得

$$\hat{x}(k+1|k) = (A_0 - k_0 c_0^T)\hat{x}(k|k-1) + k_0 y(k) + b_0 u(k)$$
(21)

即

式

$$\hat{x}(k|k-1) = (I - z^{-1}A^*)^{-1} [k_0 y(k-1) + b_0 u(k-1)]$$

$$(22)$$

$$\oplus A^* = A_0 - k_0 c_0^T.$$

3 算例仿真

3.1 模型描述

本文研究对象是一个带有后缘控制面的柔性 机翼模型,控制面由作动器驱动. 翼面几何尺寸及 加速度传感器和控制面位置如图2所示.

机翼骨架为梁架结构,材料为硬铝.机翼的动力学有限元模型采用粱单元建模,如图3所示.在模型结点上分布有集中质量单元,模拟翼肋、电机、 配重等零部件的质量.最终用 NASTRAN 计算得出 机翼的前四阶固有频率为3.18Hz、8.23Hz、13.89 Hz、18.27Hz.用 NASTRAN 计算得到的机翼颤振速 度为27.7m/s,颤振频率6.27Hz.

图 3 柔性机翼的有限元模型

利用 NASTRAN 进行气动弹性控制研究十分 不便,因此,本文采用自编程序研究机翼颤振主动 抑制问题.在自编程序中,保留了机翼的前四阶固 有模态、一个控制面偏转模态,采用亚音速偶极子 网格非定常气动力模型并使用最小状态近似将其 转化到时域中来.基于本文建立柔性机翼时域状态 方程,采用根轨迹法求得的颤振速度为28.1m/s, 颤振频率为6.27Hz.该结果与NASTRAN计算得到 的结果吻合,说明了机翼的状态空间模型是准确可 靠的.计算结果如下图4所示.

3.2 控制律设计及仿真

由于三维机翼颤振模型一般都不满足最小相 位系统的要求,故本文的控制律设计采用了间接自 适应控制方法,也即自校正设计方法.该方法一般 包含两个回路:一个包括控制对象和控制器;另一 个由参数估计器和控制器参数计算器组成.本文控 制系统结构如图 5 所示.

Fig. 5 The construction of control system

在 Matlab/Simulink 上构建了机翼颤振主动抑制仿真平台,图 6 所示.

图 6 LQG 自适应器仿真框图

Fig. 7 Comparison between nominal model and

estimated model ($V = 34 \text{ m/s} > V_f$)

这里在系统参数辨识之前先通过均衡实现对 原始模型进行降阶处理^[6],由13阶降为10阶,辨 识效果如图7所示.从图中可以看出三者吻合良 好,这说明降阶辨识是可行的.

图 8 和图 9 给出了机翼颤振主动抑制的效果. 从中可以看出机翼颤振得到有效抑制, 舵偏角也在 合理范围之内.

图 8 闭环加速度时间历程(V=34m/s>V_f)

Fig. 8 Time history of closed – loop acceleration ($V = 34 \text{ m/s} > V_f$)

Fig. 9 Deflection of the trailing – edge control surface (V = 34 m/s > V_f)

针对单输入单输出系统,控制器的输出信号和 舵机的输入信号之比即为整个颤振抑制系统的开 环传递函数,我们可以用 Nyquist 准则来判断控制 系统的增益裕度和相位裕度.表1给出了各来流条 件下颤振频率附近系统的稳定裕度.

表1 颤振主动抑制的稳定裕度

T 1 1	4	. 1 .1.		c	- 1		C1	•
Fahle		stability	maroin	ot.	the	active	thutter	sunnression
rabic	1	Stability	margin	or	unc	active	manut	suppression

Velocity(m/s)	Gain Margin(dB)		Phase Margin(deg)		
38	-4.1	1.5	- 18	23	
34	-3.3	2.3	- 32	58	
28	-2.4	12.2	- 92	31	
20	-13.2	9.2	- 33	36	
12	-8.7	15.2	-47	32	

由表1可以看出在12~38 m/s飞行条件下, 系统的稳定裕度良好.

图 7 名义模型与估计模型对比($V=34m/s > V_f$)

4 结论

本文建立了某带有后缘控制面的柔性机翼模 型,并基于 LQG 自校正控制器设计方法研究了其 颤振抑制问题,仿真结果表明该方法能有效抑制颤 振的发生,并具有一定的鲁棒性.但目前仅限于数 值仿真阶段,实际控制效果有待于后来的风洞实验 来验证.这里先仅研究的是单控制面情况,为了进 一步提高系统的控制效率,针对多控制面的控制效 果研究将是下一步研究重点.

参考文献

 杨仕福,王琪,赵永辉等.大展弦比机翼控制.动力学与 控制学报,2011,9(3):79~85.(Yang SF, Wang Q, Zhao Y H. etc. Control of a high-aspect-ratio wing using multiple actuators. *Journal of Dynamics and Control*, 2011,9(3): 79~85(in Chinese))

- 2 Jie Zeng, Boris Moulin. Adaptive feedforward control for gust load alleviation. Journal of Guidance, Control and Dynamics, 2010,33(3): 862 ~ 872
- 3 赵永辉. 气动弹性力学与控制. 北京:科学出版社,2007: 320~322 (Zhao Y H. Aeroelasticity and control. Beijing: Science Press,2007:320~322 (in Chinese))
- 4 董宁. 自适应控制. 北京:北京理工大学出版社, 2009:
 49~63 (Dong N. Adaptive control. Beijing: Beijing Institute of Technology Press, 2009;49~63(in Chinese))
- 5 李清泉. 自适应控制理论、设计与应用. 北京:科学出版 社,1990:314~316(LiQQ. Theory、design and application of adaptive control. Beijing: Science Press, 1990:314 ~316(in Chinese))
- 6 熊纲,杨超.平衡截断方法在气动伺服弹性系统模型降 阶中的应用.航空学报,2001,22(2):168~170 (Xiong G,Yang C. Application of balanced truncation met-hod on aeroservoelastic model reduction. Acta Aeronautica Et Astronautica Sinca, 2001,22(2):168~170(in Chinese))

ACTIVE FLUTTER SUPPRESSION FOR THE WING BASED ON LQG SELF-TUNING CONTROLLER*

Si Yipo Zhao Yonghui

(State Key Laboratory of Mechamics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract This paper studied the design method of the LQG self-tuning controller to suppress the flutter of a wing. The flexible wing model with a single trailing-edge control surface was used in this study. The on-line identification was used to obtain the time-varying parameters of the system, and the Kalman filter was used to estimate the states of the system. Then, the control law was determined by solving a set of discrete-time algebraic Riccati equations. All the developed algorithms were implemented on the Simulink platform. The simulation results show that the developed controller is effective and robust.

Key words LQG self-tuning controller, parameter identification, active flutter suppression

Received 2 August 2011, revised 11 August 2011.

^{*} The project supported by Natural Science Foundation of China (10972100)