en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王双特,E-mail:wangshuangte@163.com

中图分类号:O415.6

文献标识码:A

文章编号:1672-6553-2022-20(2)-036-09

DOI:10.6052/1672-6553-2021-052

参考文献 1
Shivamoggi B K,Rollins D K.Generalized Painlevé formulation of Lie group symmetries of the ZK equation.Physics Letters A,1991,161(3):263~266
参考文献 2
Hamza A M.A kinetic derivation of a generalized ZK equation for ion acoustic turbulence in a magentized plasma.Physics Letters A,1994,190:309~316
参考文献 3
屈长征,柴乃序.变系数Zakharov-Kuznetsov方程的容许变换和Painleve分析.西北大学学报(自然科学版),1995,25(6):575~577(Qu C Z,Chai N X.Allowed transformations and Painlevé property of the variable-coefficient Zakharov-Kuznetsov equations.Journal of Northwest University(Natural Science Edition),1995,25(6):575~577(in Chinese))
参考文献 4
Mohammed K E.Deriving the new traveling wave solutions for the nonlinear dispersive equation,KdV-ZK equation and complex coupled KdV system using extended simplest equation method.Communications in Theoretical Physics,2015,64(4):379~390
参考文献 5
傅海明,戴正德.Zakharov-Kuznetsov方程的新精确解.周口师范学院学报,2013,30(5):4~7(Fu H M,Dai Z D.New exact solutions for the Zakharov-Kuznetsov equation.Journal of Zhoukou Normal University,2013,30(5):4~7(in Chinese))
参考文献 6
Dong Z Z,Chen Y,Lang Y H.Symmetry reduction and exact solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Chinese Physics B,19(9),2010,090205
参考文献 7
崔艳英,吕大昭,刘长河.(3+1)维Zakharov-Kuznetsov方程的Wronskian形式解.北京建筑工程学院学报,2012,28(2):68~71(Cui Y Y,Lv D Z,Liu C H.Wronskian form solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Journal of Beijing University of Civil Engineering and Architecture,2012,28(2):68~71(in Chinese))
参考文献 8
种鸽子,于浩洋,王海权,等.三维Zakharov-Kuznetsov方程解的衰减性.纯粹数学与应用数学,2021,37(1):57~63(Chong G Z,Yu H Y,Wang H Q,et al.Decay properties of solutions of the three-dimensional Zakharov-Kuznetsov equation.Pure and Applied Mathematics,2021,37(1):57~63(in Chinese))
参考文献 9
韦丽.具有幂律非线性的(3+1)维Zakharov-Kuznetsov方程的行波解.应用数学进展,2020,9(9):1426~1435(Wei L.Traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Advances in Applied Mathematics,2020,9(9):1426~1435(in Chinese))
参考文献 10
Wei L,Ren M R.Bounded traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Scholars Journal of Physics,Mathematics and Statistics,2019,7(7):99~103
参考文献 11
Moslem W M,Ali S,Shukla P K,et al.Solitary,explosive,and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability.Physics of Plasmas,2007,14(8),082308
参考文献 12
Lu D C,Seadawy A R,Arshad M,et al.New solitary wave solutions of(3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications.Results in Physics,2017,7:899~909
参考文献 13
熊维玲,梁海珍.(3+l)维KdV-Zakharov-Kuznetsov方程的亚纯行波解.广西科技大学学报,2015,26(4):9~16(Xiong W L,Liang H Z.Meromorphic travel solutions of(3+1)dimensional KdV-Zakharov-Kuznetsov equation.Journal of Guangxi University of Science and Technology,2015,26(4):9~16(in Chinese))
参考文献 14
黄欣.首次积分法下高维非线性偏微分方程新的行波解.四川师范大学学报(自然科学版),2014,37(3):312~315(Huang X.New traveling wave solutions of the higher dimensional nonlinear partial differential equation by the first integral method.Journal of Sichuan Normal University(Natural Edition),2014,37(3):312~315(in Chinese))
参考文献 15
Li H,Sun S R,Wang K M.Bifurcations of traveling wave solutions for the generalized Zakharov-Kuznetsov equation.2011 IEEE International Conference on Intelligent Computing and Intelligent Systems vol.1,Guangzhou,2011-11-18,Institute of Electrical and Electronics Engineers,Inc.102~107
参考文献 16
Zhang W B,Zhou J B.Traveling wave solutions of a generalized Zakharov-Kuznetsov equation.ISRN Mathematical Analysis,2012,107846
参考文献 17
Zhao H X,Qiao L J,Tang S Q.Peakon,pseudo-peakon,loop,and periodic cusp wave solutions of a three-dimensional 3DKP(2,2)equation with nonlinear dispersion.Journal of Applied Analysis and Computation,2015,5(3):301~312
参考文献 18
Zhao H X,Tang S Q.Peakon,pseudo-peakon,cusp and smooth solitons for a nonlocal Kerr-likemedia.Mathematical Methods in the Applied Sciences,2017,40(7):2702~2712
参考文献 19
马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001:115~116(Ma Z E,Zhou Y C.Qualitative and stability methods of ordinary differential equations.Beijing:Science Press,2001:115~116(in Chinese))
参考文献 20
Huang J C,Gong Y J,Chen J.Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting.International Journal of Bifurcation and Chaos,2013,23(10),1350164
参考文献 21
楼智美,王元斌,俞立先.一类强非线性二阶微分方程的多模态近似解析解研究.动力学与控制学报,2019,17(5):463~466(Lou Z M,Wang Y B,Yu L X.Study on multimode approximate analytical solution of a class of strongly nonlinear second order differential equations.Journal of Dynamics and Control,2019,17(5):463~466(in Chinese))
参考文献 22
Durmaz S,Altay D S,Kaya M O.High order Hamiltonian approach to nonlinear oscillators.International Journal of Nonlinear Sciences and Numerical Simulation,2010,11(8):565~570
参考文献 23
Herr S,Kinoshita S.The Zakharov-Kuznetsov equation in high dimensions:small initial data of critical regularity.Journal of Evolution Equations,2021,21:2105~2121
参考文献 24
Osman M S,Rezazadeh H,Eslami M.Traveling wave solutions for(3+1)dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity.Nonlinear Engineering,2019,8(1):559~567
目录contents

    摘要

    结合动力系统分支理论,对一个非线性(3+1)维修正KdV-Zakharov-Kuznetsov方程进行理论上的研究.首先,根据不同参数值和三次方程判别式分别定性分析了平衡点的类型和相应轨线情况.其次,利用Jacobi椭圆函数,从形式上给出了若干有界行波解和同宿轨的公式,这一结论扩展了已有文献的工作.最后,利用Hamilton函数法数值地给出了几类多模态近似解,以此表明有界行波解的周期性.

    Abstract

    Combining with bifurcation theory in dynamical systems, a nonlinear (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation is theoretically investigated. Firstly, based on different parameter values and discriminant in cubic equation, types of equilibria and their corresponding phase portraits are qualitatively analyzed, respectively. Secondly, by the Jacobi elliptical functions, formulas of some bounded traveling wave solutions and homoclinic loops are formally obtained, extending results in literature. Finally, several multi-mode approximations are numerically presented via Hamiltonian method, which indicate periodicity of bounded traveling wave solutions.

  • 引言

  • Zakharov-Kuznetsov(ZK)方程作为理论物理学中研究非线性波的一类重要方程,首先由Zakharov和Kuznetsov利用磁化等离子体的流体描述得到, 此后Shivamoggi等人也得到了ZK方程[1-3].一般地,具有幂律n非线性(3+1)维Zakharov-Kuznetsov方程为

  • ut+αunux+Δa1,a2,a3ux=0
    (1)
  • 其中,α,a1,a2,a3为实常数,Δa1,a2,a3=a1x2+a2y2+a3z2.当α=0时方程退化为线性的.当a3=0时认为方程退化为(2 + 1)维,若还有n=1,认为是KdV方程的推广形式.

  • 对于n=1,当Δa1,a2,a3=Δ(Laplace算子)时,文献[4]利用Extended Simplest Equation法讨论了一类行波解,文献[5]利用F-展开法获得了其它方法不曾给出的形式更丰富的显式行波解,包括双曲函数解和三角函数解;当a1=b,a2=a3=1时,文献[6]应用经典李群方法得到了其对称和约化方程,通过求解约化方程给出原方程的一些精确解;当α=6,a1=1,a2=a3=3时,文献[7]提出了Wronski形式展开法,通过该方法求出了双孤子解、双三角函数解、Complexiton解、Matveev解和Jacobi椭圆函数解;当α=1, Δa1,a2,a3=Δ时,文献[8]证明了相应初值问题解的指数衰减性,同时指出这个性质与加权Sobolev空间中解的持久性及解的唯一连续性相关;而文献[9,10]则解决了Δa1,a2,a3=bΔ时可能的行波解.此外文献[11,12]也进行了深入研究.

  • 对于n=2,当Δa1,a2,a3=Δ时,文献[13]将其转化为复域中的常微分方程(ODE),并给出相应亚纯行波解;文献[14]( Δa1,a2,a3=Δ)基于交换代数除法定理,给出了若干首次积分及对应行波解.对于n为正整数,文献[15,16]结合动力系统分支理论讨论了一些行波解,但都取积分常数为零.

  • 基于文献[14~16],本文定性分析n=2和Δa1,a2,a3=Δ时的行波解,即(3+1)维修正KdV-Zakharov-Kuznetsov(MKdVZK)方程

  • ut+αu2ux+(Δu)x=0
    (2)
  • 假定上述偏微分方程(2)有行波解u=u(ξ),化为一个三阶ODE

  • -cu'+αu2u'+3u'''=0
    (3)
  • 其中,()′指ddξ(),ξ=x+y+z-ct,c表示波速.当c=0时原方程不显含时间t.积分一次得二阶ODE

  • u''=13cu-19αu3+C1
    (4)
  • 注意C1为积分常数.引入X=u,Y=u′并改写XYxy,得到与式(4)等价的平面三次多项式系统

  • x'=y,y'=13cx-19αx3+C1=f(x)
    (5)
  • 由于一个物理系统对于有界行波解具有实际意义,因此我们常常关注有界解.设φ(ξ)是系统(5)的连续解,且limξ+ φ(ξ)=A,limξ- φ(ξ)=B.如果:(1)A=B,则称φ(ξ)为孤立波解;(2)AB,则称φ(ξ)为扭结波或反扭结波解.孤立波解对应同宿轨,扭结或反扭结波解对应异宿轨(连接轨),周期波解对应周期轨.因此需利用动力系统分支理论找到系统(5)的同宿轨和周期轨[17,18]以确定原方程的有界行波解.

  • 一般文献中,对于C1≠0的情形较少讨论,故本文对此进一步讨论,安排如下:首先分别研究C1=0和C1≠0时的相轨线和几类行波解;其次结合Hamilton函数法给出多模态近似解及其数值模拟;最后总结和讨论.

  • 1 C1=0的情形

  • 显然地,当C1=0时有平衡点O=(0,0)(原点)和E1,2=x1,2,0,x1,2=±3c/α.后者要求cα同号.当c=0时,E1,2退化为O.

  • 先看O的Jacobi矩阵J(θ)=01c30.若c>0,则O是鞍点;若c<0,由对称性定理或连续的首次积分y2=13cx2-118αx4+h可知O是中心[19],其中h是积分常数;若c=0,则O是退化的.注意这个首次积分涵盖了文献[14]的结果.

  • 再看E1,2的Jacobi矩阵JE1,2=01-c30.若c<0,E1,2是鞍点;若c>0,E1,2是中心.

  • 基于以上分析,分情况讨论闭轨的存在性.不妨设相轨线为

  • Γ(h)={(x,y)H(x,y):=13cx2-118αx4+h-y2=0
    (6)
  • (1)c,α>0

  • 此时,由奇点指标可知,闭轨所围奇点仅有三种可能:{O,E1,E2},E1E2.常数h满足hh0=-c2/2α(h0<0).当h0h<0时有两条分别围绕E1E2的闭轨;当h=0时仅有过O的同宿闭轨Γ(0)且围绕E1E2;当h>0时仅有一条围绕奇点O,E1E2的闭轨.

  • 沿同宿轨Γ(0)的行波解为

  • u(ξ)=±6cαsechc3ξ+C2
    (7)
  • C2为积分常数.对于一般的h,沿闭轨Γ(h)的行波解形式上为Jacobi椭圆余弦函数

  • u(ξ)=±Acnkξ+C2,m
    (8)
  • 其中,A2=3αc+2αh+c2,k2=2αh+c23m2=12+c22αh+c2.显然式(7)是式(8)的特例.

  • (2)c,α<0

  • 由奇点指标可知闭轨内部只有奇点O.常数h无限制,但h0>0.当h=h0时有同宿轨Γ(h0);当0<hh0时有围绕O的闭轨;当h=0时上述闭轨退化为奇点O;当h<0和hh0时无闭轨.

  • 沿同宿轨Γ(h0)的行波解为

  • u(ξ)=±3cαtanh-c6ξ+C2
    (9)
  • 对于h∈(0,h0),沿闭轨Γ(h)的行波解形式上为Jacobi椭圆正弦函数

  • u(ξ)=±Asnkξ+C2,m
    (10)
  • 其中,A2=3αc+2αh+c2,m2=c+2αh+c22-2αhk2=162αh+c2-c.显然式(9)是式(10)的特例.

  • (3)c>0,α<0

  • 此时不存在闭轨,因唯一的奇点O是鞍点.

  • (4)c<0,α>0

  • 此时有一族闭轨围绕O,但h≥0.当h=0时闭轨Γ(h)退化为奇点O.同上有行波解(8).

  • (5)c=0,α>0

  • 此时有一族闭轨围绕奇点O,同样h≥0.当h=0时闭轨Γ(h)退化为奇点O.通过虚模数变换可得行波解

  • u(ξ)=18hα14snξ1,α18hi=18hα1418hα+18hsnξ2,mdnξ2,m
    (11)
  • 其中,实数模m=αα+18h,ξ1=αh1814ξ+C2,ξ2=α+18h18hξ1.式(11)的确为一个实函数.

  • (6)c=0,α<0

  • 此时由对称性和dydx定号知无闭轨.

  • 总之,在情形(1)、(2)、(4)、(5)下可有闭轨(周期解)或有界行波解.图1(a)-图1(f)描述了几种相轨线.

  • 2 C1≠0的情形

  • 此时O不是平衡点.设平衡点为E*=(x*,0),其中x*满足三次方程

  • f(x)=13cx-19αx3+C1=0
    (12)
  • 引入方程(12)的判别式px=-c3α,qx=-9C1α

  • Δx=qx22+px32=81C12α-4c34α3
    (13)
  • 以下对Δx分情况讨论.此外式(3)有首次积分

  • H(x,y)=fh(x)-y2=0
    (14)
  • 其中fh(x)=13cx2-118αx4+2C1x+h为辅助函数.而相轨线记为Γ(h)={(x,y)H(x,y)=0}.

  • 2.1 Δx>0的情形

  • 此时方程(12)有一个实根和两个复根,且要求:①81C12α4c3,α>0;②81C12α4c3,α<0.

  • 对于①,显然Jacobi矩阵为JE*=0113c-αx*20,故detJE*=13αx*2-c0detJE*=13αx*2-c0.此外detJE*>0,否则当αx*2<c时由方程(12)有

  • C1=19x*αx*2-3c
    (15)
  • 图1 C1=0时的相图:(a)c=α=1;(b)c=α=-1; (c)c=1,α=-1;(d)c=-1,α=1; (e)c=0,α=1;(f)c=0,α=-1.

  • Fig.1 Phase diagrams when C1=0: (a)c=α=1;(b)c=α=-1; (c)c=1,α=-1;(d)c=-1,α=1; (e)c=0,α=1;(f)c=0,α=-1.

  • C1x*异号.但这不可能,因此唯一的平衡点E*是中心,有周期解.

  • 此外,当C1>0时E*位于x正半轴上,反之则位于x负半轴上.而h有负的下限hm,利用方程组f(x)=fh(x)=0及Sylvester结式法可知,hm满足三次方程

  • Rxf,fh=α2262444α2h3+4αc2h2+c4-54αC12ch+2432αC14-3C12c3=0.
    (16)
  • 显然方程(16)的判别式为ΔR=α4Δx3C1236,故hm唯一.当h=hm时闭轨退化为奇点E*.

  • 对于②,类似可知唯一的平衡点E*是鞍点,注意假设αx*2cC1x*同号.参数h无限制,但当h=h0>0时有过E*的同宿轨,而h0满足三次方程(16).

  • 图2给出了上述几种情形的相轨线.

  • 最后考虑有界行波解和周期解.由方程(16)中的结式可知,当hhmfh(x)=0有两个互异单重实根及一对共轭复根.先作变换w=|α|1814u,η=|α|1814ξ,化为标准形式

  • dwdη2=a0w-w1w-w2(w-l)2+s2
    (17)
  • 这样有界行波解形式上为

  • u(ξ)=18|α|14w(η)w(η)=Acnκη+C2,m+BCcnκη+C2,m+D
    (18)
  • 相应系数为

  • A=12w1+w2C-12u1-w2DB=12w1+w2D-12w1-w2CC=w1-l-sm1,D=w1-l-sm1E=s2+w1-lw2-lsw1-w2,m1=E+a1E2+1,m2=11+m12,κ=2a2sm1w1-w22mm1

  • aj2=1(j=0,1,2),C2是积分常数.

  • 2.2 Δx=0的情形

  • 此时方程(12)有两个不相等的实根,无复根,且C1=±2c9c/α,要求cα>0.判别式ΔR=0表明仅有两个不同的临界值h0hm.

  • 先考虑C1=-2c9c/α显然有双曲平衡点E*(1)=(-2c/α,0)(c>0时为中心,c<0时为鞍点)和退化平衡点E*(2)=(c/α,0).取变换u=x-x*,v=y,x*=c/αu=Au1,v=Av1A=3-αx*,可得系统

  • u1'=v1,v1'=u12-1cu13
    (19)
  • 上述系统等价于[20]

  • x'=y,y'=x2+o|x,y|4
    (20)
  • 因此E*(2)是余维至少为4的尖点.

  • 此时分两种情况考虑:①c,α>0;②c,α<0.对于①,要求hhm=-4c23α.当h>h0=c26α时闭轨Γ(h)包围E*(1)=(-2c/α,0)和退化平衡点E*(2)=(c/α,0).当h=h0时有过平衡点E*(2)的同宿轨Γ(h0);当hmhh0时闭轨Γ(h)仅包围平衡点E*(1);当h=hm时闭轨Γ(h)退化为平衡点E*(1).对于②,无闭轨,但当h=hm时有过平衡点E*(1)的同宿轨;当h=h0时有过平衡点E*(2)的同宿轨.

  • 图2 Δx>0时的相图: (a)c=α=C1=1;(b)c=α=1,C1=-1; (c)c=1,α=-1,C1=1;(d)c=1,α=-1,C1=-1.

  • Fig.2 Phase diagrams when Δx>0: (a)c=α=C1=1;(b)c=α=1,C1=-1; (c)c=1,α=-1,C1=1;(d)c=1,α=-1,C1=-1.

  • 至于C1=2c9c/α,有余维至少为4的尖点E*(1)=(-c/α,0)和双曲平衡点E*(2)=(2c/α,0)(c>0时为中心,c<0时为鞍点),再由对称性可得相应结论.

  • 图3给出了上述几种情形的相轨线.

  • 最后看有界行波解.当h=h0时方程fh(x)=0有一个三重实根x=±c/α和一个单重根x=3c/α,沿同宿轨Γ(h0)的行波解为

  • u(ξ)=4-4c18α1814ξ+C22-αc+cα,C1=-2c9cα,c>0,44-c18-α1814ξ+C22-αc+cα,C1=-2c9cα,c<0,44c18α1814ξ+C22+αccα,C1=2c9cα,c>04-4-c18-α1814ξ+C22+αc-cα,C1=2c9cα,c<0
    (21)
  • 图3 Δx=0时的相图:C1=-2c9cα:( a )c=α=1;(b)c=α=-1;C1=2c9cα:(c)c=α=1;(d)c=α=-1

  • Fig.3 Phase diagrams when Δx=0.C1=-2c9cα:( a )c=α=1;(b)c=α=-1;C1=2c9cα:(c)c=α=1;(d)c=α=-1

  • 其中C2是积分常数.这表明了同宿轨,因为limξ u(ξ),u'(ξ)=±cα,0.

  • hh0hm时,有界行波解形式上同式(18).

  • 2.3 Δx<0的情形

  • 此时有三个两两不相等的实根,而cα同号,只需考虑以下两种情形即可

  • 81C12α>4c3,α<0(c<0)

  • 81C12α<4c3,α>0(c>0)

  • 不妨设C12=kc3αk<481,x=cαz,则方程(12)化为f1±(z)=13z-19z3±k=0,正号对应c>0.由零点定理知三个实根z*(1)<-1,z*(2)(-1,0),z*(3)>1,因此c>0时平衡点E*(1)E*(3)是中心,而E*(2)是鞍点;当c<0时平衡点E*(1)E*(3)是鞍点,而E*(2)是中心.不妨设轨线Γ(h)过平衡点E*(j)的临界值为hj,显然hj应满足方程(16),j=1,2,3.判别式ΔR表明有三个临界值hj.

  • 先看c>0.此时hhm=minh1,h3,而h2h1,h2h3.但当C1>0时,作差有

  • fhx*(1)-fhx*(3)=c23αz*(1)-z*(3)6k+z*(1)+z*(3)1-z*(1)2+z*(3)26
    (22)
  • 由于z*(3)<3,z*(1)>-3z*(1)+z*(3)>0,因此式(22)的中括号内是大于零的,故h1h3.但h1可正可负.反之,当C1<0时h1h3.

  • hh2时有一条闭轨围绕三个奇点;当hmaxh1,h3,h2时有两条分别围绕E*(1)E*(3)的闭轨;当hm<h<maxh1,h3时有一条闭轨(C1>0时围绕E*(3);C1<0时围绕E*(1)).至于c<0,h无限制,但h2h1,h2h3.如果C1>0,式(22)的中括号内化为

  • z1+z32-12z12+z32-13z1z3
    (23)
  • 简记z*(j)zj.平移等值线可知,当函数g(x,y)=12x2+y2-13xy过边界点(3,3)时,在矩形区域32x3,1y3上取得最大值,恰为2.但z1+z3<0,因此式(22)的中括号内是大于零的,故h1h3.反之,当C1<0时h1h3.仅当hh2,minh1,h3时有围绕中心E*(2)的闭轨.

  • 统一看临界情形轨线.当h=hj时,若E*(j)为中心,则一族闭轨退化为E*(j);反之,若E*(j)为鞍点,则轨线退化为过该点的同宿轨(鞍点的分界线).

  • 图4给出了上述几种情形的相轨线.奇点E*(j)Ej表示.

  • 图4 Δx<0时的相图: (a) c=α=1,k=381;(b)c=α=-1,k=381;(c)c=1,α=1,k=-381; (d)c=α=-1,k=-381

  • Fig.4 Phase diagrams when Δx<0: (a) c=α=1,k=381;(b)c=α=-1,k=381;(c)c=1,α=1,k=-381; (d)c=α=-1,k=-381

  • 最后看有界行波解.同样地当hhj(j)时,fh(x)=0无重根.对于c>0,当hh2hhm,maxh1,h3时,有界行波解形式上同式(18).

  • c>0,hmaxh1,h3,h2时,存在有界行波解.改写式(17)为标准形式

  • dwdη2=-w-w1w-w2w-w3w-w4
    (24)
  • 其中w1w2w3w4.一个有界行波解形式上为u(ξ)=18|α|14w(η),其中

  • w(η)=w3w1-w2S22-w2w1-w3w1-w2S22-w1-w3
    (25)
  • Jacobi椭圆正弦函数为

  • S2=snw1-w3w2-w42η+C2,m2, 模数为m2=w1-w2w3-w4w1-w3w2-w4.至于h=hj,改写为

  • dudξ2=-α18u-xa2u-xbu-xc
    (26)
  • 单重实根xbxc,有界行波解形式上为

  • u(ξ)=xaxb-xc(E+1)2-4xcxb-xaExb-xc(E+1)2-4xb-xaE
    (27)
  • 其中E=expα18xa-xcxb-xaξ+C2.C2为积分常数.

  • 3 Hamilton函数法求多模态近似解

  • 当奇点为中心时,文献[21]利用Hamilton函数法给出一个强非线性二阶微分方程的多模态近似解以反应周期性.以上可以看到,有界行波解或周期解常以Jacobi椭圆函数的复杂形式出现,因此需要一种近似方法来快速反应精确解.

  • C1=0,c,α>0为例.取Hamilton函数H(x,y)=fh(x)-y2,设多模态行波近似解u(ξ)=i=02 aicos(2iwξ),初值条件为u(0)=A,u'(0)=0,在0,T4上对ξ积分有不变量[22]

  • H-=π6wα-116a14+-12a02-12a0a2-14a22a12-16a04-12a02a24-116a24+ca02+12c-6w2a12+12c-24w2a22
    (28)
  • 再求偏导有aiH-f=0(i=0,1,2),即方程组

  • 4αa03+6αa0a12+6αa0a22+3αa12a2-12ca0=0(29a)

  • -14a12-a02-a0a2-12a22α+cf2+12=0(29b)

  • -14αa23+-a02-12a12α+ca2-12αa0a12f2+48a2=0(29c)

  • 最后解出系数aif=1w.以下给出数值实例.

  • 例1:取参数c=α=1及初值A=1,由方程(29)解得系数

  • a0=1.554207050,a1=-0.6152063185,a2=0.06099926808,f=2.732773277.图5(a)中分别绘出了多模态近似解(黑色实线)和解析形式解(8)(红色点线)曲线,在0≤ξ≤70内两者几乎重合,近似程度非常好.

  • 其次,以C1,α,Δx>0为例.Hamilton函数同上,类似的有代数方程组.以数值实例来说明.

  • 例2:取c=α=k=A=1,由方程(29)解得系数

  • a0=2.146903270,a1=-1.284554716, a2=0.1376514457,而f=1.665373391.图5(b)中绘出了多模态近似解(红色点线)和解析形式解(黑色实线)曲线,近似程度同样非常好.

  • 除了以上形式多模态近似解外,对于C1=0,c=-1,α=1,可取多模态近似解为u(ξ)=i=13 aicos[(2i-1)wξ].总之,Hamilton函数法所得近似解能快速反映出周期解的性态,是值得推广的方法.

  • 图5 多模态近似解(实线)曲线与 (a)例1中解析解(点线)曲线; (b)例2中解析解(点线)曲线.

  • Fig.5 Curves of multi-mode approximate solution(line) and (a)analytical solution(dot line) in example1; (b)analytical solution(dot line) in example2.

  • 4 结论

  • 本文主要定性分析了非线性(3+1)维修正KdV-Zakharov-Kuznetsov方程的行波解和相轨线情况.与已有文献相比,结合平衡点E*所满足三次方程的判别式,我们深入研究参数C1≠0的情形,并描述了相轨线的走向,同时形式上给出了若干有界行波解的表达式.今后,可深入研究广义ZK方程,以及高维和分数阶情形[15,16,23,24].总之,这是一个值得继续研究的方向.

  • 参考文献

    • [1] Shivamoggi B K,Rollins D K.Generalized Painlevé formulation of Lie group symmetries of the ZK equation.Physics Letters A,1991,161(3):263~266

    • [2] Hamza A M.A kinetic derivation of a generalized ZK equation for ion acoustic turbulence in a magentized plasma.Physics Letters A,1994,190:309~316

    • [3] 屈长征,柴乃序.变系数Zakharov-Kuznetsov方程的容许变换和Painleve分析.西北大学学报(自然科学版),1995,25(6):575~577(Qu C Z,Chai N X.Allowed transformations and Painlevé property of the variable-coefficient Zakharov-Kuznetsov equations.Journal of Northwest University(Natural Science Edition),1995,25(6):575~577(in Chinese))

    • [4] Mohammed K E.Deriving the new traveling wave solutions for the nonlinear dispersive equation,KdV-ZK equation and complex coupled KdV system using extended simplest equation method.Communications in Theoretical Physics,2015,64(4):379~390

    • [5] 傅海明,戴正德.Zakharov-Kuznetsov方程的新精确解.周口师范学院学报,2013,30(5):4~7(Fu H M,Dai Z D.New exact solutions for the Zakharov-Kuznetsov equation.Journal of Zhoukou Normal University,2013,30(5):4~7(in Chinese))

    • [6] Dong Z Z,Chen Y,Lang Y H.Symmetry reduction and exact solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Chinese Physics B,19(9),2010,090205

    • [7] 崔艳英,吕大昭,刘长河.(3+1)维Zakharov-Kuznetsov方程的Wronskian形式解.北京建筑工程学院学报,2012,28(2):68~71(Cui Y Y,Lv D Z,Liu C H.Wronskian form solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Journal of Beijing University of Civil Engineering and Architecture,2012,28(2):68~71(in Chinese))

    • [8] 种鸽子,于浩洋,王海权,等.三维Zakharov-Kuznetsov方程解的衰减性.纯粹数学与应用数学,2021,37(1):57~63(Chong G Z,Yu H Y,Wang H Q,et al.Decay properties of solutions of the three-dimensional Zakharov-Kuznetsov equation.Pure and Applied Mathematics,2021,37(1):57~63(in Chinese))

    • [9] 韦丽.具有幂律非线性的(3+1)维Zakharov-Kuznetsov方程的行波解.应用数学进展,2020,9(9):1426~1435(Wei L.Traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Advances in Applied Mathematics,2020,9(9):1426~1435(in Chinese))

    • [10] Wei L,Ren M R.Bounded traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Scholars Journal of Physics,Mathematics and Statistics,2019,7(7):99~103

    • [11] Moslem W M,Ali S,Shukla P K,et al.Solitary,explosive,and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability.Physics of Plasmas,2007,14(8),082308

    • [12] Lu D C,Seadawy A R,Arshad M,et al.New solitary wave solutions of(3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications.Results in Physics,2017,7:899~909

    • [13] 熊维玲,梁海珍.(3+l)维KdV-Zakharov-Kuznetsov方程的亚纯行波解.广西科技大学学报,2015,26(4):9~16(Xiong W L,Liang H Z.Meromorphic travel solutions of(3+1)dimensional KdV-Zakharov-Kuznetsov equation.Journal of Guangxi University of Science and Technology,2015,26(4):9~16(in Chinese))

    • [14] 黄欣.首次积分法下高维非线性偏微分方程新的行波解.四川师范大学学报(自然科学版),2014,37(3):312~315(Huang X.New traveling wave solutions of the higher dimensional nonlinear partial differential equation by the first integral method.Journal of Sichuan Normal University(Natural Edition),2014,37(3):312~315(in Chinese))

    • [15] Li H,Sun S R,Wang K M.Bifurcations of traveling wave solutions for the generalized Zakharov-Kuznetsov equation.2011 IEEE International Conference on Intelligent Computing and Intelligent Systems vol.1,Guangzhou,2011-11-18,Institute of Electrical and Electronics Engineers,Inc.102~107

    • [16] Zhang W B,Zhou J B.Traveling wave solutions of a generalized Zakharov-Kuznetsov equation.ISRN Mathematical Analysis,2012,107846

    • [17] Zhao H X,Qiao L J,Tang S Q.Peakon,pseudo-peakon,loop,and periodic cusp wave solutions of a three-dimensional 3DKP(2,2)equation with nonlinear dispersion.Journal of Applied Analysis and Computation,2015,5(3):301~312

    • [18] Zhao H X,Tang S Q.Peakon,pseudo-peakon,cusp and smooth solitons for a nonlocal Kerr-likemedia.Mathematical Methods in the Applied Sciences,2017,40(7):2702~2712

    • [19] 马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001:115~116(Ma Z E,Zhou Y C.Qualitative and stability methods of ordinary differential equations.Beijing:Science Press,2001:115~116(in Chinese))

    • [20] Huang J C,Gong Y J,Chen J.Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting.International Journal of Bifurcation and Chaos,2013,23(10),1350164

    • [21] 楼智美,王元斌,俞立先.一类强非线性二阶微分方程的多模态近似解析解研究.动力学与控制学报,2019,17(5):463~466(Lou Z M,Wang Y B,Yu L X.Study on multimode approximate analytical solution of a class of strongly nonlinear second order differential equations.Journal of Dynamics and Control,2019,17(5):463~466(in Chinese))

    • [22] Durmaz S,Altay D S,Kaya M O.High order Hamiltonian approach to nonlinear oscillators.International Journal of Nonlinear Sciences and Numerical Simulation,2010,11(8):565~570

    • [23] Herr S,Kinoshita S.The Zakharov-Kuznetsov equation in high dimensions:small initial data of critical regularity.Journal of Evolution Equations,2021,21:2105~2121

    • [24] Osman M S,Rezazadeh H,Eslami M.Traveling wave solutions for(3+1)dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity.Nonlinear Engineering,2019,8(1):559~567

  • 参考文献

    • [1] Shivamoggi B K,Rollins D K.Generalized Painlevé formulation of Lie group symmetries of the ZK equation.Physics Letters A,1991,161(3):263~266

    • [2] Hamza A M.A kinetic derivation of a generalized ZK equation for ion acoustic turbulence in a magentized plasma.Physics Letters A,1994,190:309~316

    • [3] 屈长征,柴乃序.变系数Zakharov-Kuznetsov方程的容许变换和Painleve分析.西北大学学报(自然科学版),1995,25(6):575~577(Qu C Z,Chai N X.Allowed transformations and Painlevé property of the variable-coefficient Zakharov-Kuznetsov equations.Journal of Northwest University(Natural Science Edition),1995,25(6):575~577(in Chinese))

    • [4] Mohammed K E.Deriving the new traveling wave solutions for the nonlinear dispersive equation,KdV-ZK equation and complex coupled KdV system using extended simplest equation method.Communications in Theoretical Physics,2015,64(4):379~390

    • [5] 傅海明,戴正德.Zakharov-Kuznetsov方程的新精确解.周口师范学院学报,2013,30(5):4~7(Fu H M,Dai Z D.New exact solutions for the Zakharov-Kuznetsov equation.Journal of Zhoukou Normal University,2013,30(5):4~7(in Chinese))

    • [6] Dong Z Z,Chen Y,Lang Y H.Symmetry reduction and exact solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Chinese Physics B,19(9),2010,090205

    • [7] 崔艳英,吕大昭,刘长河.(3+1)维Zakharov-Kuznetsov方程的Wronskian形式解.北京建筑工程学院学报,2012,28(2):68~71(Cui Y Y,Lv D Z,Liu C H.Wronskian form solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation.Journal of Beijing University of Civil Engineering and Architecture,2012,28(2):68~71(in Chinese))

    • [8] 种鸽子,于浩洋,王海权,等.三维Zakharov-Kuznetsov方程解的衰减性.纯粹数学与应用数学,2021,37(1):57~63(Chong G Z,Yu H Y,Wang H Q,et al.Decay properties of solutions of the three-dimensional Zakharov-Kuznetsov equation.Pure and Applied Mathematics,2021,37(1):57~63(in Chinese))

    • [9] 韦丽.具有幂律非线性的(3+1)维Zakharov-Kuznetsov方程的行波解.应用数学进展,2020,9(9):1426~1435(Wei L.Traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Advances in Applied Mathematics,2020,9(9):1426~1435(in Chinese))

    • [10] Wei L,Ren M R.Bounded traveling wave solutions of the(3+1)-dimensional Zakharov-Kuznetsov equation with power law nonlinearity.Scholars Journal of Physics,Mathematics and Statistics,2019,7(7):99~103

    • [11] Moslem W M,Ali S,Shukla P K,et al.Solitary,explosive,and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability.Physics of Plasmas,2007,14(8),082308

    • [12] Lu D C,Seadawy A R,Arshad M,et al.New solitary wave solutions of(3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications.Results in Physics,2017,7:899~909

    • [13] 熊维玲,梁海珍.(3+l)维KdV-Zakharov-Kuznetsov方程的亚纯行波解.广西科技大学学报,2015,26(4):9~16(Xiong W L,Liang H Z.Meromorphic travel solutions of(3+1)dimensional KdV-Zakharov-Kuznetsov equation.Journal of Guangxi University of Science and Technology,2015,26(4):9~16(in Chinese))

    • [14] 黄欣.首次积分法下高维非线性偏微分方程新的行波解.四川师范大学学报(自然科学版),2014,37(3):312~315(Huang X.New traveling wave solutions of the higher dimensional nonlinear partial differential equation by the first integral method.Journal of Sichuan Normal University(Natural Edition),2014,37(3):312~315(in Chinese))

    • [15] Li H,Sun S R,Wang K M.Bifurcations of traveling wave solutions for the generalized Zakharov-Kuznetsov equation.2011 IEEE International Conference on Intelligent Computing and Intelligent Systems vol.1,Guangzhou,2011-11-18,Institute of Electrical and Electronics Engineers,Inc.102~107

    • [16] Zhang W B,Zhou J B.Traveling wave solutions of a generalized Zakharov-Kuznetsov equation.ISRN Mathematical Analysis,2012,107846

    • [17] Zhao H X,Qiao L J,Tang S Q.Peakon,pseudo-peakon,loop,and periodic cusp wave solutions of a three-dimensional 3DKP(2,2)equation with nonlinear dispersion.Journal of Applied Analysis and Computation,2015,5(3):301~312

    • [18] Zhao H X,Tang S Q.Peakon,pseudo-peakon,cusp and smooth solitons for a nonlocal Kerr-likemedia.Mathematical Methods in the Applied Sciences,2017,40(7):2702~2712

    • [19] 马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001:115~116(Ma Z E,Zhou Y C.Qualitative and stability methods of ordinary differential equations.Beijing:Science Press,2001:115~116(in Chinese))

    • [20] Huang J C,Gong Y J,Chen J.Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting.International Journal of Bifurcation and Chaos,2013,23(10),1350164

    • [21] 楼智美,王元斌,俞立先.一类强非线性二阶微分方程的多模态近似解析解研究.动力学与控制学报,2019,17(5):463~466(Lou Z M,Wang Y B,Yu L X.Study on multimode approximate analytical solution of a class of strongly nonlinear second order differential equations.Journal of Dynamics and Control,2019,17(5):463~466(in Chinese))

    • [22] Durmaz S,Altay D S,Kaya M O.High order Hamiltonian approach to nonlinear oscillators.International Journal of Nonlinear Sciences and Numerical Simulation,2010,11(8):565~570

    • [23] Herr S,Kinoshita S.The Zakharov-Kuznetsov equation in high dimensions:small initial data of critical regularity.Journal of Evolution Equations,2021,21:2105~2121

    • [24] Osman M S,Rezazadeh H,Eslami M.Traveling wave solutions for(3+1)dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity.Nonlinear Engineering,2019,8(1):559~567

  • WeChat

    Mobile website