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摘要 模态摄动法(modal
 

perturbation
 

method,MPM)是一种基于矩阵范数的模态截断方法,适用于具有复

杂动力学系统的工程、物理、数学等领域.该方法基于模态分析理论,以无扰动状态下的模态特性为基底,引

入小参数摄动项,对系统的线性刚度矩阵和非线性刚度矩阵进行逐步求解,从而量化相邻系统的相对误差.
其核心思想是利用小参数特性,将高维复杂系统转化为可替代的低维系统,实现模型降阶与高效求解.该方

法的基本步骤包括:首先,识别对结构动态行为有显著影响的低阶模态,构建简化的初始模型;其次,基于摄

动理论对模态进行修正;最后,通过计算刚度矩阵的范数,逐步筛选出对系统具有重要贡献的关键模态.模

态摄动法的优势在于能够利用基础的数学理论简化复杂的模态分析问题,具有计算精度高、适用范围广的

特点.然而,该方法对小参数的选取确定有一定要求,在大扰动情况下可能需要较高的计算成本.与Galerkin
方法相比,模态摄动法在处理参数激励下的拉索模态截断问题时,仅需少量模态即可达到11阶Galerkin法

的精度,计算效率提升显著.
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Abstract The
 

modal
 

perturbation
 

method(MPM)
 

is
 

a
 

modal
 

truncation
 

technique
 

based
 

on
 

matrix
 

norms,
 

applicable
 

to
 

complex
 

dynamic
 

systems
 

in
 

engineering,
 

physics,
 

mathematics,
 

and
 

related
 

fields.
 

This
 

method
 

is
 

grounded
 

in
 

modal
 

analysis
 

theory,
 

using
 

the
 

modal
 

characteristics
 

of
 

an
 

unperturbed
 

state
 

as
 

a
 

basis
 

and
 

introducing
 

small
 

parameter
 

perturbations
 

to
 

iteratively
 

solve
 

the
 

system􀆶s
 

linear
 

and
 

nonlinear
 

stiffness
 

matrices,
 

thereby
 

quantifying
 

the
 

relative
 

error
 

between
 

adjacent
 

systems.
 

The
 

core
 

i-
dea

 

is
 

to
 

leverage
 

the
 

properties
 

of
 

small
 

parameters
 

to
 

transform
 

a
 

high-dimensional
 

complex
 

system
 

in-
to

 

an
 

equivalent
 

low-dimensional
 

system,
 

achieving
 

model
 

order
 

reduction
 

and
 

efficient
 

computation.
 

The
 

key
 

steps
 

of
 

the
 

method
 

include:
 

first,
 

identifying
 

low-order
 

modes
 

that
 

significantly
 

influence
 

structural
 

dynamic
 

behavior
 

to
 

construct
 

a
 

simplified
 

initial
 

model;
 

second,
 

refining
 

the
 

modes
 

based
 

on
 

perturbation
 

theory;
 

and
 

finally,
 

progressively
 

screening
 

critical
 

modes
 

that
 

contribute
 

substantially
 

to
 

the
 

system
 

by
 

computing
 

the
 

norm
 

of
 

the
 

stiffness
 

matrix.
 

The
 

advantages
 

of
 

the
 

MPM
 

lie
 

in
 

its
 

ability
 

to
 

simplify
 

complex
 

modal
 

analysis
 

problems
 

using
 

fundamental
 

mathematical
 

theory,
 

offering
 

high
 

com-
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putational
 

accuracy
 

and
 

broad
 

applicability.
 

However,
 

the
 

method
 

imposes
 

certain
 

requirements
 

on
 

the
 

selection
 

of
 

small
 

parameters,
 

and
 

it
 

may
 

incur
 

higher
 

computational
 

costs
 

under
 

large
 

perturbations.
 

Compared
 

with
 

the
 

Galerkin
 

method,
 

the
 

MPM
 

can
 

achieve
 

the
 

accuracy
 

of
 

the
 

11th-order
 

Galerkin
 

method
 

with
 

only
 

a
 

few
 

modes
 

when
 

dealing
 

with
 

the
 

modal
 

truncation
 

of
 

cables
 

under
 

parametric
 

excita-
tion,

 

and
 

the
 

calculation
 

efficiency
 

is
 

significantly
 

improved.
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perturbation
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引言
  

在现代工程科学、物理学及应用数学的研究

中,复杂动力学系统的建模与分析始终是一个核心

课题[1-3].随着系统规模持续扩大和非线性因素影

响日益增强,传统的模态分析方法在处理高维、非

线性或参数不确定系统时面临诸多挑战,例如计算

成本高昂、精度受限、难以准确捕捉系统整体动态

特性等问题[4,5].因此,发展一种既能有效降低模型

复杂度,又能保持较高精度的分析方法,已成为当

前研究的热点之一[6].
为解决模态截断问题,众多学者开展了深入研

究,并取得了一定成果[7-9].其中,模态加速法[10]通

过将现有模态叠加与静态特解相结合,提升了振动

响应分析的效果,尤其适用于低频范围.高精度模

态叠加方法[11,12]则通过将不可用模态表示为可用

模态与系统矩阵的组合,并按其贡献展开为显式级

数形式,从而有效减小残差误差.然而,这些方

法[7,13-15]通常忽略高阶项,存在截断展开带来的精

度损失问题.尤其在连续结构系统中,模态截断问

题更为突出[16,17],因为这类系统往往涉及非线性

特征值问题,即使在小扰动下也难以精确求解.这

些问题推动了更高效方法的发展,以应对连续结构

谐振响应中常见的模态截断难题.
  

在此背景下,模态摄动法[18]作为一种高效的

模态分析技术应运而生.该方法融合了经典模态分

析与摄动理论的基本思想,在高阶模态中引入小参

数摄动项,对系统刚度矩阵进行逐步修正,从而实

现对系统动态行为的高精度逼近.其核心理念在

于:以无扰动状态下的模态基底为基础,通过摄动

展开量化参数变化引起的模态特性变化,并据此筛

选出对系统响应具有显著影响的关键模态,进而构

建低维等效模型.
  

模态摄动法具有多方面的优势.首先,它基于

坚实的数学理论基础,具备良好的解析性与可解释

性;其次,该方法能够有效处理参数扰动对系统模

态的影响,特别适用于存在微小非线性扰动的系

统;再次,通过模态截断与矩阵范数筛选机制,可在

保持较高精度的同时实现模型降阶,显著提升计算

效率.然而,该方法也存在一定的局限性,例如对小

参数摄动项的选取较为敏感,若扰动较大,可能需

要更高阶的展开项,导致计算成本上升.此外,对于

高度非线性和强耦合系统,其适用性仍有待进一步

验证与拓展.
  

本文旨在系统阐述模态摄动法的理论框架、关

键技术及最新进展.全文结构安排如下:第1节详

细介绍模态摄动法的基本步骤;第2节展示其在参

数激励系统中的具体应用;第3节将其与Galerkin
方法进行对比分析;第4节总结当前面临的挑战并

展望未来发展方向.通过上述内容的探讨,本文希

望为相关领域的研究者提供一份系统、全面的参

考,并推动该方法在更广泛工程与科学领域的

应用.

1 模态摄动法介绍

1.1 模态摄动法的基本原理
  

模态摄动法是一种融合经典模态分析与摄动

理论的高效模型降阶方法,适用于复杂动力学系统

的动态响应分析与模态特性研究.该方法能有效处

理具有非线性、参数扰动或结构微小变异的高维系

统,能够在保持较高计算精度的同时显著降低模型

复杂度,提高数值求解效率.其基本原理是:以无扰

动状态下的系统模态为基底,引入一个表征系统参

数变化的小参数摄动项,对系统的刚度矩阵进行逐

阶修正.通过构建摄动展开式,逐步逼近系统在参

28
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数扰动下的模态响应,并利用模态贡献度筛选对系

统动态行为具有显著影响的关键模态.最终,形成

一个能够有效反映原系统主要动态特性的低维等

效模型.

1.2 模态摄动法的步骤
  

图1展示了模态摄动法的算法流程图,实现过

程可以分为以下六个步骤:

第一步 模态分析
  

首先建立系统的线性动力学模型(如基于牛顿

定律或哈密顿原理推导的运动方程),通过求解特

征值问题 (K-ω2M)φ=0
 

,得到系统的固有频率
 

ωi 和振型
 

φi(i=1,2,…,n).由于低阶模态(如前
 

10
 

阶)对系统整体响应(如振动位移、能量分布)的
贡献通常占主导地位(例如建筑结构的前

 

3
 

阶模态

贡献可达
 

70%
 

以上),因此优先提取并保留低阶模

态(如按频率从小到大排序的前
 

N 阶),作为初始

分析的核心对象.
第二步 引入摄动参数

  

实际工程系统中,系统可能因材料性能波动

(如钢材弹性模量偏差
 

5%)、几何尺寸误差(如构

件厚度比设计值小
 

2%)、装配间隙(微小非线性)

等产生
 

“扰动”.这些扰动会导致系统的刚度矩阵

K、质量矩阵 M 偏离理想值,进而改变模态特性

(固有频率、振型)和响应.引入摄动参数ε(0<ε≪
1,如取ε=0.01~0.1,将系统中受扰动影响的某

阶模态表示为:εi-1φi

通过这种形式,可量化不同阶摄动对模态的影

图1 模态摄动法的算法流程图
Fig.1 Algorithm

 

flowchart
 

of
 

the
 

modal
 

perturbation
 

method

响程度.
第三步 构建系统

  

基于模态分析结果和引入的摄动参数,构建系

统的离散化模型.通常利用Galerkin
 

离散化方法,

将系统的动力学方程从连续形式(如偏微分方程)

转化为离散的矩阵形式.具体来说,假设系统的响

应可以表示为:

v(x,t)=∑
N

i=1
εi-1φi(x)qi(t)

 

(1)

其中,φi(x)是模态振型,qi(t)是模态坐标.通过
 

Galerkin
 

方法,可以将系统的运动方程投影到模态

空间,得到模态坐标的动力学方程.
  

首先基于前 N 阶模态,构建 N 维离散系统,

得到对应的质量矩阵 MN、刚度矩阵KN 和阻尼矩

阵CN;为验证高阶模态的影响,进一步补充
 

1
 

阶模

态(即前N+1阶),构建 N+1维离散系统,得到

矩阵 MN+1、KN+1、CN+1.通过比较 N
 

维和
 

N+1
维系统的响应,可以评估模态截断的误差.
第四步 计算矩阵范数

在模态摄动法中,计算矩阵范数是一个关键步

骤,其目的是量化模态对系统动态行为的影响,并
评估模态的重要性.通过计算刚度矩阵的范数,可
以筛选出对系统响应具有显著影响的关键模态,从
而为模型降阶提供依据.常用的矩阵范数包括:
(1)2-范数(谱范数)

A 2= (ATA) (2)

即矩阵的最大奇异值,反映矩阵的
 

“最大能量

增益”(如对输入向量的最大拉伸能力).在动力学

中,‖K‖2 表 示 刚 度 矩 阵 的 最 大 弹 性 势 能,

‖M‖2 表示质量矩阵的最大惯性效应.
(2)Frobenius

 

范数[19]

A F=∑
m

i=1
∑
n

j=1
aij

2 (3)

即矩阵元素平方和的平方根,反映矩阵的
 

“整体能

量”(所有元素的综合贡献).
  

基于步骤三构建的 N 维和N+1维系统,分
别计算其刚度矩阵和质量矩阵的范数:

N 维系统:计算‖KN‖2、‖MN‖2(或对应的

Frobenius范数‖KN‖F、‖MN‖F);

N+1维系统:计算‖KN+1‖2、‖MN+1‖2.
  

矩阵范数可以用来度量不同维度矩阵之间的

差别,关键对比指标主要为范数相对变化率(如:

38
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KN+1 - KN

KN
和

MN+1 - MN

MN
)和差值范数

(如:KN+1-K'
N 2 和 MN+1-M'

N 2).其中K'
N、

M'
N 是N 维矩阵在N+1维空间中的增广形式,直

接量化
 

“增加模态带来的矩阵差异”.若变化率小

于阈值(如
 

0.1%)说明增加第
 

N+1
 

阶模态对系

统整体特性影响微弱.
第五步 数值验证

  

在模态摄动法中,数值验证是一个关键步骤,

用于检查系统的收敛性.通过数值方法验证系统的

收敛性,可以确保模态摄动法的计算结果具有足够

的精度.具体来说,需要评估模态截断的误差.定义

范数误差为

Rε  =
KN+1 - KN

KN
(4)

  

如果误差在可接受范围内,则认为系统收敛;
否则,需要增加模态数量,重新进行计算.

  

对于低维系统,也可通过数值方法(如龙格-
库塔法)求解N 维和N+1维系统的响应.这些响

应可以表示为模态坐标的函数,即:

vN(x,t)=∑
N

n=1
εn-1φn(x)qn(t)

vN+1(x,t)=∑
N+1

n=1
εn-1φn(x)qn(t) (5)

其中,qn(t)是第n阶模态下的时间依赖坐标,φn(x)
是第n 阶模态振型.

  

计算N 维系统和N+1维系统的响应之间的

误差.误差可以表示为:

E=‖vN+1(x,t)-vNx,t‖
 

(6)
其中,‖·‖

 

表示适当的范数(如2-范数或Frobe-
nius范数).如果误差E 在可接受范围内(例如小

于某个阈值),则认为系统收敛;否则,需要增加模

态数量,重新进行计算.
第六步 确定模态

  

根据数值验证的结果,确定有效模态数量 N.
有效模态数量是指满足预设计算精度所需的最小

模态数量.通过逐步增加模态数量,进行数值验证,
直到系统的响应收敛为止.确定有效模态数量后,

可以构建低维等效模型,用于后续的动态分析.
  

基于方程(4)的矩阵范数,若截断误差满足

R(ε)≤δ,则初步确定截断数量N
~,

 

计算N
~

阶以内

所有模态的幅值 An
 (ε),并设定模态幅值的阈值

Ath(如取最大幅值的10%);若存在某阶模态 N≤

N
~,满足An

 (ε)>Ath,则将截断数量调整为 N=
nmax(nmax为满足An

 (ε)>Ath 的最大阶数);若
所有模态均满足An

 (ε)>Ath,则保留 N 作为最终

截断数量.
  

通过该平衡机制,可有效避免
 

“ε小导致过度

截断”
 

的问题.确保幅值较大的模态未被截断,同
时避免引入过多无关模态.

2 模态摄动法的应用实例

考虑拉索面内的参数运动方程:

m∂
2v
∂t2

+cy
∂v
∂t-T∂

2v
∂x2-

EA
L
d2y
dx2+

∂2v
∂x2  ·

 Wt  sinθ+∫
L

0

dy
dx
∂v
∂x+

1
2
∂v
∂x  

2􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 dx  +
 EI∂

4v
∂x4=0

 

(7)

其中,v(x,t)是拉索在位置x 和时间t处的横向位

移.m 表示单位质量,cy 表示阻尼,E 为杨氏模量,

A 为横截面积,L 为拉索的长度,T 为轴向张力,θ
为拉索的夹角,

2.1 模态分析

首先,对无摄动状态下的拉索进行模态分析.
假设拉索的边界条件为固定-固定,其模态频率和

模态振型可以通过求解自由运动方程得到:

m∂
2v
∂t2

-T∂
2v
∂x2=0

 

(8)

采用分离变量法,令

v(x,t)=φ(x)q(t)
 

(9)

代入自由运动方程,可得

d2q
dt2φ

-
T
m
d2φ
dx2q=0 (10)

即

T
mφ
d2φ
dx2=

1
q
d2q
dt2

   

(11)

该式左边仅取决于t,右边仅取决于x,其共同的值

必为某一常数,令其为a,则有

T
mφ
d2φ
dx2=

1
q
d2q
dt2

=a
   

(12)

可改写为

d2φ
dx2-

m
Taφ=0 (13)

d2q
dt2

-aq=0
   

(14)
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由于常量a 一般为负值,可令a=-ω2,T/m=β2,
则可求解

φ(x)=Acosωx
β

+Bsinωx
β

(15)

q(t)=Ccosωt+Dsinωt (16)

若两端为固支,则边界条件满足v(0,t)=v(L,t)=
0,可得

φ(0)=0,φ(L)=0
 

(17)

振型函数需满足上式,则A 必为0,得

Bsinωx
β

=0
 

(18)

由于B 不为0,则

sinωL
β

=0 (19)

式(18)也被称为频率方程或者特征方程.由此可得

无穷个ω 的值,称为固有频率,第n 阶固有频率为

ωnL
β

=nπ, n=1,2,…
 

(20)

或

ωn =
nβπ
L
, n=1,2,

 

(21)

因此,φn x  =sin
ωnπ
L .

2.2 引入摄动参数

假设拉索受到小参数摄动,其动态响应可以表

示为模态振型的线性组合:

v(x,t)=∑
�

n=1
εn-1φn(x)qn(t) (22)

或向量形式

v(x,t)=φq
其中,

 

φ=(φ1,εφ2,ε2φ3,…,εN-1φN-1)

q=(q1,q2,q3,…,qN-1)T

qn(t)是第n 阶模态下的时间依赖坐标.
注意,此处引入的摄动参数是在模态叠加的过

程中对高阶模态添加小参数,该摄动参数区别于系

统刚度和质量引起的变化.

2.3 构建系统

将v(x,t)的向量形式代入拉索的运动方程,
左乘φT,并对x 从0到L 积分,可得矩阵方程:

Mq+Cq+(K+K(2)+K(3))q=F (23)

矩阵系数矩阵满足

M =m∫
L

0

φTφdx
 

(24)

C=cy∫
L

0

φTφdx
 

(25)

K=-T∫
L

0

φTφdx+EI∫
L

0

φTφ″″dx-

 EA
L∫

L

0

y″φTdx∫
L

0

y'φ'dx-
EA
LWt  sinθ∫

L

0
φTφ″dx

(26)

K(2)=-
1
2

EA
L∫

L

0

y″φTdx∫
L

0

φqφdx-

 EA
L∫

L

0

φTφ″″dx∫
L

0

φqφdx (27)

K(3)=-
1
2

EA
L∫

L

0

φTφ″qdx∫
L

0

φ'qφ'dx
 

(28)

F=
EA
L W t  sinθ∫

L

0
y″φTdx (29)

2.4 计算矩阵范数
  

质量矩阵与阻尼矩阵是一个对角矩阵,并且最

大元素在一阶主子式上.这表明质量与阻尼在低阶

模态起决定性作用.因此,模态截断的数量主要依

赖于刚度矩阵.
首先考虑线性刚度矩阵

K=-T∫
L

0

φTφdx+EI∫
L

0

φTφ″″dx-

 EA
L∫

L

0

y″φTdx∫
L

0

y'φ'dx-
EA
LW(t)sinθ∫

L

0
φTφ″dx

(30)
  

根据2-范数定义,可计算线性刚度矩阵K 的特

征值.需要注意,在线性刚度矩阵中包含参数激励

W(t),依赖于时间,因此‖K‖2 的结果与时间有关,

这不利于计算,根据范数定义,W(t)为一元函数,并
且结合工程意义,必有上界,即满足‖W(t)‖≤W
因此,用矩阵

K=-T∫
L

0

φTφdx+EI∫
L

0

φTφ″″dx-

 EA
L∫

L

0

y″φTdx∫
L

0

y'φ'dx-
EA
L Wsinθ∫

L

0
φTφ″dx

(31)

代替式(30).
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图2直观地展示了线性刚度矩阵的范数变化

情况,揭示了在小摄动情况下,系统的前6个模态

对动态行为的贡献非常接近.这一现象表明,单自

由度系统与6自由度系统在动态特性上具有高度

相似性,一阶模态在结构的振动过程中占据主导地

位.基于此特性,可以对系统进行降阶处理,从而有

效简化分析过程.这种降阶方法不仅能够显著减少

计算复杂度,还能在保证精度的前提下提高计算效

率,适用于处理复杂动力学系统.

图2 前6个自由度系统的线性刚度矩阵范数

Fig.2 The
 

linear
 

stiffness
 

matrix
 

norm
 

of
 

the
 

first
 

six
 

degrees
 

of
 

freedom
 

system

系统包含了二次非线性刚度和三次非线性刚

度,理解非线性刚度对于准确预测和分析结构的动

态响应至关重要.非线性刚度矩阵的分析与线性刚

度矩阵类似,二次非线性刚度矩阵:

K(2)=-
1
2

EA
L∫

L

0

y″φTdx∫
L

0

φqφdx-

 EA
L∫

L

0

φTφ″″dx∫
L

0

φqφdx (32)
  

二次刚度矩阵中包含广义坐标q,它与时间有

关,无法直接计算矩阵范数.为方便分析非线性刚

度矩阵的2-范数,记

K(2)=G1qTG2+G3qTG1 (33)

其中,

G1=-
1
2

EA
L∫

L

0

y″φTdx

G2=∫
L

0

φTφdx , G3=-
EA
L∫

L

0

φTφ″″dx
  

根据范数的三角不等式与相容性,可得

K(2) ≤|G1|·|qT|·|G2|+|G3|·|qT|·|G1|
(34)

  

由于范数‖q‖必有上界,且恒为常数,即存在

M∈R,使得‖q‖≤M,从而有

K(2) ≤|G1|·|qT|·|G2|+|G3|·|qT|·

 |G1|≤M(|G1|·|G2|+|G3|·|G1|)(35)
令

g2(ε)=|G1|·|G2|+|GG3|·|G1|
 

(36)
  

函数g2(ε)能描述二次刚度的矩阵范数关于

摄动参数的变化特征,因此,可以通过研究函数g2

(ε)对二次刚度进行定性分析.
  

图3(a)展示了前6个自由度系统的二次刚度

矩阵的范数(‖K(2)‖)随摄动参数ε的变化情况.
当ε增加到0.5以上时,系统的刚度矩阵范数随着

图3 前6个自由度系统的二次非线性刚度矩阵范数

Fig.3 The
 

quadratic
 

nonlinear
 

stiffness
 

matrix
 

norm
 

of
 

the
 

first
 

six
 

degrees
 

of
 

freedom
 

system
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摄动参数的增加而显著增加.在图3(b)中,6自由

度系统对应曲线上升最快,表明在大扰动下,多自

由度系统的刚度矩阵范数增加更为显著.图3表

明,在小扰动下,系统的动态行为主要由低阶模态

控制,高阶模态的影响较小.
  

同理,可处理三次非线性刚度矩阵:

K(3)=-
1
2

EA
L∫

L

0

φTφ″qdx∫
L

0

φ'qφ'dx

  =K1qqTGK2 (37)

其中

K1=-
1
2

EA
L∫

L

0

φTφ″dx

K2=∫
L

0

φ'Tφ'dx

则有

K(3) =|K1|·|qqT|·|K2| (38)

令

g3(ε)=|K1|·|K2| (39)
  

图4(a)展示了在不同模态数量下,三次非线

性刚度矩阵范数‖K(3)‖与参数ε之间的关系.参

图4 前6个自由度系统的三次非线性刚度矩阵范数

Fig.4 The
 

cubic
 

nonlinear
 

stiffness
 

matrix
 

norm
 

of
 

the
 

first
 

six
 

degrees
 

of
 

freedom
 

system

数ε对所有系统的三次刚度矩阵范数都有显著影

响.随着ε 的增加,‖K(3)‖呈现出非线性增长的

趋势.这表明ε是影响系统三次非线性刚度特性的

重要参数,其变化会导致系统刚度特性的显著改

变.图4(b)展示了三次非线性刚度矩阵的相对变

化率随摄动参数ε的变化情况.图中的横轴表示摄

动参数
 

ε,纵轴表示范数的相对变化率(以百分比

表示).不同的曲线代表不同阶次之间的相对变化

率.在ε较小的范围内(大约ε<0.5),所有曲线都

显示出较小的增长,表明在小摄动下,系统的三次

非线性刚度矩阵范数变化不大.特别是第
 

5
 

阶与第
 

6
 

阶之间的相对变化率(绿色实线)在ε<0.5时几

乎为零,表明在这个范围内,这两阶之间的刚度矩

阵范数几乎没有变化.当ε增加到0.5以上时,所
有曲线开始显著上升,表明系统的三次非线性刚度

矩阵范数随着摄动参数的增加而显著增加.随着阶

次的增加,相对变化率的曲线在ε较大时上升得更

快.这可能反映了高阶模态在面对相同摄动时,其
刚度矩阵范数的变化更为敏感.

2.5 数值验证
  

数值验证的主要目的是确认前面关于刚度矩

阵中不同阶数组合的范数相对变化率与参数ε关

系的分析结果的准确性和可靠性.图5展示了2自

由度系统和3自由度的幅频响应曲线.通过对比图

5中的红色圆圈(代表3-DOF系统)和黑色星形线

(代表2-DOF系统),发现两者在一阶模态上的频

响曲线几乎无异.这种一致性不仅验证了模态摄动

法在模态截断中的准确性,也暗示了在某些情况

下,高阶模态对拉索动态响应的影响可以忽略

不计.

图5 二自由度系统和三自由度的幅频响应曲线
Fig.5 Frequency-response

 

curves
 

for
 

the
 

2-DOF
 

and
 

3-DOF
 

systems

78



动 力 学 与 控 制 学 报 2025年第23卷

基于弹性体振动理论,系统动能T 与势能V
的传统表达式为:

T=
1
2q

˙Mq
˙, V=

1
2qKq.

  

图6展示了动能与势能的变化图,通过数值实

验发现,当
 

ε>0.6时,高阶模态坐标的幅值变化较

复杂,这可能会使得模态摄动法在选取较大的摄动

参数时,模态截断方法在高维系统中失效.

图6 动能与势能关于摄动参数的变化

Fig.6 The
 

changes
 

of
 

kinetic
 

energy
 

and
 

potential
 

energy
 

with
 

respect
 

to
 

perturbation
 

parameters
  

数值验证的结果进一步证实了模态摄动法在

处理三次非线性刚度矩阵时的有效性和可靠性.通
过对比不同自由度系统的幅频响应曲线,不仅验证

了模态截断的准确性,还揭示了在特定条件下高阶

模态对动态响应影响的有限性.这些发现对于结构

设计和动态分析具有重要的实际应用价值.

2.6 确定模态
  

在数值计算中,可以通过改变摄动参数的步

长、迭代次数等计算参数,观察刚度矩阵范数误差

的变化情况.如果随着步长细化或迭代次数增加,
范数误差逐渐减小并趋于一个稳定值,说明计算方

法是收敛的;反之,如果误差没有明显减小甚至增

大,则可能需要调整计算方法或参数.
  

根据误差设计[公式(4)],图7展示了刚度矩

阵的范数误差,随着摄动参数
 

ε
 

的增加,线性刚度

矩阵的相对误差较小,但在ε 较大时也会有所增

加,而非线性刚度矩阵的相对误差显著增大,尤其

是在ε接近1时,这表明非线性效应在系统中的影

响随着摄动参数ε的增加而显著增大.这些结果表

明,在处理具有显著非线性的结构问题时,需要特

别注意非线性效应的影响,尤其是二次和三次非线

性效应.

图7 不同系统之间的范数误差

Fig.7 Norm
 

errors
 

between
 

different
 

systems

3 对比Galerkin离散
  

在模态摄动法中,取ε=1时,便是Galerkin方

法[20],这也意味着,Galerkin方法是模态摄动法的

一种特殊情形.因此,在传统离散过程中,同样可以

使用矩阵范数来确定模态数量.图8
 

展示了不同模

态阶数下的刚度矩阵误差,低阶模态的相对误差较

高,尤其是二次和三次刚度矩阵的误差,这表明这

些模态对非线性效应非常敏感.随着模态阶数的增

加,所有刚度矩阵的相对误差都呈现出下降的趋

势.这可能意味着高阶模态对系统的整体动态行为

影响较小.在传统的离散方法,至少需要截断到第

11阶模态才能更准确、有效地描述系统的动态行

为.该图表明,对于大多数模态,线性刚度矩阵提供

了较好的近似,而非线性刚度矩阵(尤其是三次刚

度矩阵)在低阶模态中引入了较大的误差.这可能

意味着在低阶模态下,非线性效应对系统动态行为

有显著影响.随着模态编号的增加,非线性效应的

影响逐渐减小,高阶模态可以更好地用线性刚度矩

阵来近似.
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图8 不同模态阶数下的刚度矩阵误差比较

Fig.8 Comparison
 

of
 

stiffness
 

matrix
 

errors
 

across
 

different
 

modal
 

orders

4 总结
  

本文详细阐述了模态摄动法作为一种高效的

模态分析技术,在处理复杂动力学系统方面的理论

框架、关键步骤及应用实例.通过融合经典模态分

析与摄动理论,模态摄动法为高维、非线性及参数

不确定系统的动态响应分析与模态特性研究提供

了一种强有力的工具.
  

(1)关键步骤的合理性:模态摄动法的实施步

骤包括模态分析、引入摄动参数、构建系统、计算矩

阵范数、数值验证及确定模态,每一步都紧密相连,

共同确保了分析结果的准确性和可靠性.特别是矩

阵范数的计算,通过量化模态对系统动态行为的影

响,有效评估了模态的重要性,为模型降阶提供了

科学依据.
  

(2)应用实例的验证性:通过拉索面内参数运

动方程的具体应用实例,本文展示了模态摄动法在

实际工程问题中的有效性和可靠性.特别是在处理

非线性刚度矩阵时,模态摄动法展现了其独特的优

势,能够准确预测和分析结构的动态响应.
  

(3)对 比 Galerkin 方 法 的 优 越 性:通 过 与

Galerkin方法的对比分析,本文进一步揭示了模态

摄动法的优越性.例如,在处理拉索在参数激励时

的模态截断问题时,Galerkin方法至少需要11阶

模态,
 

模态摄动法通过矩阵范数筛选机制,能够在

更低的模态阶数下达到较高的计算精度,显著提高

了计算效率.
  

尽管模态摄动法在本文的研究中表现出了良

好的性能,但其在处理高度非线性和强耦合系统时

的适用性仍需进一步研究.此外,将模态摄动法与

其他数值方法结合,以提高分析的准确性和效率,

也是未来研究的一个重要方向.
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