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Abstract The modal perturbation method (MPM) is a modal truncation technique based on matrix
norms, applicable to complex dynamic systems in engineering, physics, mathematics, and related fields.
This method is grounded in modal analysis theory, using the modal characteristics of an unperturbed
state as a basis and introducing small parameter perturbations to iteratively solve the system’s linear and
nonlinear stiffness matrices, thereby quantifying the relative error between adjacent systems. The core i-
dea is to leverage the properties of small parameters to transform a high-dimensional complex system in-
to an equivalent low-dimensional system, achieving model order reduction and efficient computation.
The key steps of the method include: first, identifying low-order modes that significantly influence
structural dynamic behavior to construct a simplified initial model; second, refining the modes based on
perturbation theory; and finally, progressively screening critical modes that contribute substantially to
the system by computing the norm of the stiffness matrix. The advantages of the MPM lie in its ability

to simplify complex modal analysis problems using fundamental mathematical theory, offering high com-
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putational accuracy and broad applicability. However, the method imposes certain requirements on the
selection of small parameters, and it may incur higher computational costs under large perturbations.
Compared with the Galerkin method, the MPM can achieve the accuracy of the 11th-order Galerkin

method with only a few modes when dealing with the modal truncation of cables under parametric excita-

tion, and the calculation efficiency is significantly improved.
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respect to perturbation parameters
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