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Abstract Dynamic models of large-deformation structures are widely used to simulate the transient re-
sponse of large-scale and lightweight structures, but their geometric nonlinearity poses significant chal-
lenges for efficient and accurate modeling and control. The two-field reduced-order model (ROM) for
large-deformation structures can be constructed, via data-driven Proper Orthogonal Decomposition
(POD) with the Hellinger-Reissner variational principle. This model incorporates prior stress informa-
tion and reduces the order of stiffness invariants derived from displacement bases from fourth to third or-
der, thereby improving both the accuracy and efficiency of transient dynamic model reduction. Based on
the two-field ROM, this work further investigates efficient prediction and optimal control of flexible
structural responses by embedding the ROM into a model predictive control (MPC) framework to a-
chieve trajectory optimization and tracking. Case studies on a slender beam system and a wing skeleton
demonstrate that the proposed approach significantly reduces online computational cost while maintai-
ning accuracy, and outperforms traditional displacement-based POD methods in both efficiency and accu-

racy, showing strong applicability to MPC-based control of nonlinear flexible structures.
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