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摘要 高维动力系统的降阶方法一直以来是非线性动力系统领域的重要研究内容,对非线性振动系统、软

体机器人和复杂结构系统的响应识别、计算及预测有着重要的意义.本文在基于参数化方法和弗洛凯理论

的自激周期解不变流形降阶方法的基础上,建立了在外激励下的非自治自激振动系统的参数化降阶方法.
通过采用摄动近似方法,得到了受激励下的自激系统的参数化降阶模型.依据本文所提的方法,对含有交叉

耦合刚度的转子与定子碰摩模型的准周期解及其随着外激励频率变化的幅频曲线进行了预测.结果显示本

文的降阶模型能够有效的预测自激振动系统的受迫情况下的动力学响应.
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Abstract Model
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high-dimensional
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have
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research
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nonlinear
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引言
  

在工程实际和科学研究中,高维非线性的复杂

动力学方程一直以来都面临着分析困难和计算消

耗过大的难题.发展降阶方法并构建降阶模型可以

显著地降低系统的维数和简化高维系统的运动.因
此,模型降阶一直都是各个领域的研究的热点

问题.
降阶方法根据模型建立的方式可以分为数据

驱动方法和方程驱动方法.数据驱动方法要求有先

验的实验或者仿真数据,通过数据中隐藏的动力系

统对原系统进行识别或学习.以POD(本征正交分

解)、DMD(动态模态分解)为代表的传统数据驱动

降阶模型在流体领域得到广泛应用,对圆柱绕流模

型进行了准确的预测和控制[1].近年来依赖于神经

网络的数据驱动降阶方法在物理计算领域也有显

著的进步.以 Autoencoder架构为例,其作为一种

非线性的降阶方法相比传统POD降阶方法展现出

更加优越的性能[2].此外,通过降低系统维数进而

提高计算效率有助于数据驱动降阶方法在高维系

统的实时控制方面的应用[3,4].对于基于方程驱动

的方法要求系统的控制方程已知,可以是常微分方

程组或 者 是 离 散 的 偏 微 分 方 程.特 别 的,POD-
Galerkin同样可以应用到方程驱动的场景.

  

在振动领域,最早Shaw和Pierre[5]定义非线

性模态为“一种相切于线性特征空间的二维的不变

子流形”,通过将原系统中的被动坐标(slave
 

coor-
dinates)降阶到控制坐标(master

 

coordinates)以实

现模型降阶,并广泛地应用于振动分析[6-8].近年

来,Haller[9]提出了非线性谱子流形的概念(spec-

tral
 

submanifold,SSMs),同时阐明了非线性模态

的概念和定义.这里谱子流形被考虑为线性谱子空

间的最光滑的延拓,其存在和唯一性被证明.随后,

利用参数化方法提出了基于SSMs的方程驱动的

非线性的降阶方法[10],
 

并给出了骨架曲线、
 

频响

曲线和响应曲面[11-14]的计算方法.该方法被总结在

模型降阶工具箱SSMTool[15].
 

上述基于不变流形

的非线性降阶方法通常建立在围绕平衡点的不变

谱子流形上,尤其是自治系统中的平凡不动点.这
些降阶方法的锚点不需要进行特别的计算,因为零

不动点是已知的.此外,围绕该不动点附近的线性

动力学可以很容易地使用特征值和特征向量确定,

简化了降阶模型的构建.针对在自治系统下有一个

极限环的情况,即自激振动,基于该极限环的不变

流形来构造降阶模型的方法就相对更加复杂.
  

针对预测周期解和准周期解的模型降阶,已有

一些相关工作报道,但这些工作中的周期和准周期

解实际上是由外激励引起,而不是产生于自治系统

中的固有的自激属性.因此,这些有激励下的振动

的周期解和准周期解是通过对自治系统下不动点

的降阶模型进行参数扰动所得到的摄动解[13,14,16].
需指出的是,基于不动点的降阶模型在特定情况下

可以预测自激周期解[17],即该周期解恰好在不动

点的不稳定流形上.对于更加一般的情况,例如由

同宿分岔和逆鞍结分岔产生的周期解,需要一种更

加普遍的降阶方法.对于参数激励系统中的周期

解,模型降阶可以通过李雅普诺夫-弗洛凯变换将

系统转换成时不变系统处理,因此本质上还是针对

不动点的降阶模型[18,19].
  

为了处理机械系统自激周期解的不变流形降

阶,一些工作[20-23]对周期解不变流形的参数化方法

的实现提供了十分有用的理解.在文献[21]中,基
于弗洛凯标准型的参数化方法被开发,同时傅里

叶-泰勒级数展开被应用于推导同调方程,随后通

过对几个低维模型的稳定/不稳定流形验证了算法

的有效性.该方法在文献[24]中被应用于基于极限

环吸引不变流形参数化的等时线和等稳定线的计

算.另一种计算不变流形[25]的方法依赖于积分计

算,其难以在高维系统中实现.这些方法在天体力

学与动力系统周期解的不变流形的计算中是至关

重要的,但不适用于高维工程问题的模型降阶.转
子系统在重大装备中发挥着关键性重要作用,转子

动力学的发展对转子系统及装备的安全和性能提

升发挥着促进作用[26].转子与定子碰摩是一种危

害极大的故障状态,由于碰撞的分段光滑性会产生

丰富的动力学响应行为[27].文献[28]以转子与定

子碰摩系统为对象开发了一种针对自激周期解的

高维不变流形降阶方法,并提出了两种求解不变方

程的方法(基于弗洛凯标准型和直接代数计算).基
于弗洛凯标准型的方法被证明难以应用到高维的

机械振动系统,而利用直接代数求解的方法可以不

依赖于弗洛凯标准型的求解,通过利用弗洛凯指数

极大地提高了计算效率.在这种情况下,同调方程

不再依赖弗洛凯标准型进行坐标转换,而是采用类
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牛顿的数值求解方法直接求解出参数化展开的

系数.
  

尽管前述工作[28]已经建立起基于自激周期解

不变流形的模型降阶基本框架,但对于降阶模型的

基本应用,即导出受迫振动的频响曲线并没有提

及.而基于不动点的降阶模型在利用摄动法求解受

迫振动下的周期解已经有大量的成果[11,13-15].在这

里,考虑到所研究的系统为自激系统,即自治系统

中本就存在着一个周期解,在外激励摄动下系统会

相应地增加一个频率,从而产生对应的准周期解.
类似于不动点的情况,本文对于受迫振动的时变部

分采用摄动法近似,在文献[28]的基础上,建立了

有激励下的非自治自激系统的降阶模型,同时给出

了计算准周期幅频曲线的公式,为此类系统的降阶

预测提供了有力工具.

1 转子与定子碰摩模型
  

本文研究的对象是带有交叉耦合刚度的Jeff-

cott转子与定子碰摩模型(如图1所示),其由于碰

摩面存在干摩擦效应是典型的自激系统.该模型包

括转子和定子两个部分.转子由一根无质量且两端

理想轴承支撑的轴,以及安装在轴跨中部质量为m
的圆盘组成,圆盘的质心与几何中心o相距e(即转

子的质量偏心距),转轴以ω 匀速转动且等效刚度

记为ks,转轴的涡动频率为ωw,同时考虑由于叶尖

气隙力和油膜力产生的转子交叉耦合刚度效应,记

转子的阻尼系数和交叉耦合刚度分别为cs 和Qs.
转子与定子间的间隙为r0,定子的弹性接触面由

一组对称各向同性的径向弹簧(刚度记为kb)和表

面摩擦系数μ 表征.当转子以恒定角速度ω 旋转

时,若发生碰摩,其将受到法向力Fn 和切向库仑

摩擦力
 

Ft=μFn,摩擦力方向由转子与定子之间表

面的相对速度vrel决定.

图1 转子和定子碰摩模型:(a)
 

转子和定子碰摩系统的示意图;
(b)

 

转子和定子碰摩时的截面

Fig.1 Contact
 

and
 

friction
 

model
 

of
 

rotor
 

and
 

stator
 

friction:
 

(a)
 

Diagram
 

of
 

rotor
 

and
 

stator
 

system;
 

(b)
 

The
 

cross-section
 

of
 

rotor
 

and
 

stator
 

system

不考虑质量偏心激励时转子与定子碰摩的方

程可以表示为

mx··+csx
·
+ksx+Qsy+

 Θkb1-
r0
r  [x-μy·sgn(vrel)]=0

my
··
+csy

·
+ksy-Qsx+

 Θkb1-
r0
r  [μx·sgn(vrel)+y]=0

vrel=ωrd+ωwr (1)

其中r= x2+y2,rd表示转子转盘的轴向半径,Θ
为Heaviside函数,有Θ=0,r<r0;Θ=1,r≥r0.
对方程(1)进行无量纲化可以得到

X″+2ζX'+βX +γY+

 Θ 1-
R0

R  [X -sgn(Vrel)μY]=0

Y″+2ζY'+βY-γX +

 Θ 1-
R0

R  [sgn(Vrel)μX +Y]=0

Vrel=ΩRd+ΩwR (2)
其中无量纲参数定义为:X=x/e,Y=y/e,R0=

r0/e,Rd=rd/e,τ=ω2t,ω2= kb/m,2ζ=cs/

mkb
 ,Ω=ω/ω2,Ωw=ωw/ω2,Vrel=vrel/e,β=ks/

kb,γ=Qs/kb
 ,R= X2+Y2

 

.
  

模型(2)发生碰摩时存在着两种自激效应,一
种是由交叉耦合刚度产生的转子正向涡动的自激

振动,另一种是由于碰摩面干摩擦产生的转子反向

涡动的自激振动.其中前者对应于系统稳定的非线

性模态,而后者对应于系统不稳定的非线性模态.
本文将重点讨论围绕稳定非线性模态的参数降价

模型,因此,将忽略由转子和定子之间接触所引起

的非光滑干摩擦效应,并考虑转子与定子一直接触

时的非线性转子与定子耦合系统,即在模型(2)中
取Θ=1和sgn(Vrel)=1.此时方程写为:
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 X″+2ζX'+βX+γY+ 1-
R0

R  (X-μY)=0

 Y″+2ζY'+βY-γX+ 1-
R0

R  (μX+Y)=0

(3)
  

从物理意义上看:交叉耦合刚度的前向涡动自

激效应与干摩擦的反向涡动自激效应是竞争关系,

前者占优且与阻尼力平衡时,方程(3)存在以极限

环形式表现的自激周期解,为稳定的非线性模态.
如文献[29]所述,假设解析自激周期解可表示为自

激频率ωn 的单一谐波项形式:

X =Hcos(ωn
 t),Y=Hsin(ωn

 t)
     

(4)

2 自治系统的参数化降阶模型
   

本节将简单地回顾对自治系统下关于自激周

期解不变流形的降阶模型建立过程,详细推导请参

见文献[26],其将作为下一节建立受激励自激系统

的参数化降价模型的基础.在文献[26]中提出了两

类求解不变方程的方法:基于弗洛凯标准型的参数

化降阶方法和基于直接线性代数方法的参数化降

阶方法.由于本文所研究系统的维数较低且出于实

施过程的简便性,将采用基于弗洛凯标准型的参数

化降阶方法.
  

本文采用的转子与定子碰摩模型参数为:β=
0.11,ξ=0.05,γ=0.05,R0=1.05,μ=0.1.此时,
系统(3)自激周期解的频率和幅值分别为:ωn=
-0.4274,H=1.1322.

  

在进行参数化降阶之前,需要了解关于系统非

线性模态附近的线性动力学特性.在关于不动点的

参数化降阶方法中,通过求解系统线性部分的特征

值和特征向量,可以较为容易得到描述系统线性化

的动力学行为.但对于求解关于自激周期解的参数

化降阶方法,需要采用弗洛凯理论来描述系统线性

化的动力学特性.
  

弗洛凯理论是一种经典的研究周期解附近的

线性微分方程理论方法,对于关于周期解γ(ωt)的
线性化微分方程,有

x· =Df[γ(ωt)]x
           

(5)
其中:Df[γ(ωt)]表示向量场f(x)的雅可比矩阵.
方程(5)的解,即单值矩阵Φ(ωt),存在弗洛凯标准

型满足

Φ(ωt)=Q(t)
 

eRt
         

(6)
其中:Q(t)是时变的旋转矩阵,表示对于原坐标系

的转换,即:通过
 

x=Q(t)y,可将方程(5)转换为

常系数线性微分方程:y
·=Ry.实数矩阵R 的特征

值λ1,λ2,…被称为弗洛凯指数.
  

对于模型(3)在上述给定的系统参数下,采用

文献[26]中所提到的谱方法可以得到弗洛凯标准

型,对应的实数矩阵为:

 R=

-0.0602 0.0016 0.0037 -0.0286
0.2341 -0.0116 -0.0272 0.5609

-0.1034 -0.0157 -0.0367 -0.2337

-0.0186 -0.0006 -0.0013 -0.0915

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(7)
可求 得 弗 洛 凯 指 数 为:λ1 = -0.1037,λ2 =

-0.0481+1.2867i,λ-2=-0.0481-1.2867i,λ3=
0.下面基于参数化方法建立极限环不变流形上的

低维降阶模型,即确定参数化映射,K:ℂm× →
ℝ2n 将低维空间中的任意一点映射到高维空间的

嵌入流形上,同时确定低维的降阶动力学:Rd:

ℂm→ℂm.上述映射需满足下列的不变方程,

F􀳱K=Dz
 KRd+Dt

 K
       

(8)

其中,F:ℝ2n →ℝ2n 表示原系统的向量场,而降阶

动力学的向量场表示为:z·=Rd
 (z).

  

为了求解上述不变方程,将参数化映射展开成

傅里叶-泰勒级数的形式,即,

K=K0+∑
㈲

i=1
Kiz􀱋i=∑

k=H

k= -H
K0,ke-ikωt+

 ∑
㈲

i=1
∑
k=H

k= -H
Ki,ke-ikωtz􀱋i

      

(9)

其中:􀱋表示Kronecker积,H 表示截断的傅里叶级

数,z􀱋i∈ℂmi
表示对于坐标向量z 的 Kronecker

积连乘,Ki,k∈ℂN×mi
.需要强调的是:在不考虑内

共振的情况下,降阶动力学可以简易表示为线性动

力学,即

z·=Λmz,
 

Λm =

λ1

⋱
λm

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

(10)

将参数化映射的傅里叶-泰勒展开(9)和降阶

动力学(10)代入不变方程(8),通过归纳泰勒级数

的同阶系数,可以得到系统的同调方程,其详细的

推导过程可以参考文献[26].这里给出得到的同调

方程:

K
~
1+K1Λ=Df[γ(ωt)]K1

K
~
i+Ki∑

i

k=1
r􀱋

k =Df[γ(ωt)]Ki+Bi (11)
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其中,带有上标的K
~
i 表示K 对时间的一阶导数.其

中z􀱋
k 表示对于降阶动力系统和2参数化系数耦

合的项,Bi 表示由非线性项产生的耦合项,可由低

阶的参数化系数计算求得.对于同调方程(11)的求

解,文献[26]中给出了基于弗洛凯标准型和基于直

接代数求解的两种方法,这里仅使用基于弗洛凯标

准型的求解方法.
  

对于i>1阶的同调方程,通过坐标转换Ki=

Q(t)Pi 和 弗 洛 凯 关 系 式 Df[γ(ωt)]Q(t)=

Q(t)R+Q
·
(t),可以将同调方程转换为

P
~
i+Pi∑

i

k=1
r􀱋

k -RPi=Q(t)-1Bi (12)

其中P
~
i 表示Pi 的一阶导数.由于实数矩阵R 可以

对角化,即:R=VΛV-1,可以将系数矩阵进行坐标

转换Pi=VDi,方程(12)可以写成为:

D
~
i+Di∑

i

k=1
r􀱋

k -λDi=V-1Q(t)-1Bi (13)

通过对方程(13)向量化并将所有周期项展开

为傅里叶级数的形式,归纳出同一傅里叶阶数k下

的代数方程,可得

ikω
2I2nmi + ∑

i

k=1
r􀱋

k  T􀱋I2n  -(Imi 􀱋Λ)  ·
 Vec(Di,k)=Vec{[V-1Q(t)-1Bi]k} (14)

由于方程(14)左侧系数矩阵是对角矩阵,因此

可以直接得出参数化的系数矩阵,再通过还原当前

阶数下参数化系数矩阵Ki=Q(t)VDi,即可逐阶

地求解系统参数化映射,并得到相应的降价模型.

选取λ2=-0.0481+1.2867i,λ
~
2=-0.0481-

1.2867i和λ3=0所对应的特征向量张成的线性子

空间进行降阶的不变流形延拓.设置泰勒级数的截

断阶数为 N=15.降阶模型所生成的轨迹和原系

统完整模型的轨迹比较如图2所示,图2(a)中黑

图2 降阶模型所生成的轨迹和原系统完整模型的轨迹比较:
(a)系统中收敛到自激周期解上的轨迹;
(b)系统在不变流形上的运动轨迹三维投影

Fig.2 Comparison
 

of
 

trajectories
 

generated
 

by
 

reduced
 

model
 

and
 

original
 

system
 

integral
 

model:
 

(a)
 

Trajectory
 

converging
 

to
  

self-excitedsolution;
 

(b)
 

The
 

three-dimensional
  

projection
 

of
 

the
 

trajectory
 

of
 

the
 

system
 

on
 

the
 

invariant
 

manifold.

色实线为系统中收敛到自激周期解上的轨迹,黄色

曲面表示三维流形在一个周期内几个不同时刻下

的二维截面;图2(b)中红线代表降价模型,蓝虚线

代表完整模型.

3 受激励自激系统的参数化降价模型
  

考虑在谐波激励下的本文的转子定子碰摩自

激模型,与上述参数相同,受迫的自激振动控制方

程可以写成

X″+2ζX'+βX+γY+ 1-
R0

R  (X-μY)

 =􀆠hcos(Ωt)

Y″+2ζY'+βY-γX + 1-
R0

R  (μX +Y)

 =􀆠hsin(Ωt) (15)

将动力学方程(15)写成四维的状态空间形式:

x· =f(x)=Lx+fnl(x)+􀆠g(Ωt)
          

(16)

其中,x=[X,Y,X',Y']T,L∈ℂN×N 表示线性项,
第二项fnl(x)表示方程中的非线性项,第三项为

外激励项.由于外激励频率的引入,对于系统(16)
的参数化也相应地引入了新的频率成分,

x=K(z,ωt,Ωt)
                       

(17)
其中,ω=-0.4274为上一节中讨论的系统参数下

的自激频率,Ω 为系统所受的外激励频率.假设外

激励项为小扰动,从摄动法思想出发,参数化映射

(17)可以是对原自治系统参数化映射的摄动.假设

摄动解只保留至一阶摄动项:

K=K0(z,t)+􀆠K1(z,t)+O(􀆠2)
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Rd=R0
d(z,t)+􀆠R1

d(z,t)+O(􀆠2) (18)
其中:K0

 

(z,t)、R0
d

 (z,t)为上一节中自治系统的参

数化映射,而K1
 

(z,t)、R1
d

 (z,t)则表示考虑外激励

的一阶摄动项.将摄动后的参数化映射和降阶动力

学(18)代入不变方程,可以得到

L(K0+εK1)+fnlK0+εK1)+εg(t)

 =
∂K0

∂z
(R0

d+εR1
d)+

∂K0

∂t +ε∂K
1

∂t
 

(19)

对于ε0 阶,可以得到与上一节自治系统相同的参

数化不变方程:

LK0+fnl(K0)=
∂K0

∂zR0
d+
∂K0

∂t
(20)

其结果已经在上一节给出.而对于(􀆠1,|z|0
 

)阶,可
以得到如下方程:

Df(K0
0)K1+g(Ωt)=

∂K0

∂zR1
d+
∂K1

∂t
(21)

其中,K1、R1
d 均不包含降价系统变量z 的成分,而

仅仅是时间t的函数.
需要特别说明的是,对于方程(21)中第一项,由

于需要取􀆠1 摄动项,因此对方程(16)右端项泰勒展

开,得到一阶项Df(K)(K0+􀆠K1),取􀆠Df(K)
 

K1.此
外,由于对|z|0 阶的需求,K 需要取首次常数项,
即K0

0.
  

在求 解 方 程(21)时,采 用 弗 洛 凯 变 换 式:

Df[γ(ωt)]Q(t)=Q(t)R+Q
·
(t),同时考虑坐标

变换K1=Q(t)
 

K
︿1,方程(21)可以变换为:

g(Ωt)+[Q(t)R+Q
·
(t)]K

︿
1

 =Q(t)[v2,v-2,v3]R1
d+Q

·
(t)K

︿1+Q(t)
∂K
︿1

∂t
(22)

其中,[v2,v-2,v3]表示所选取的特征子空间(与

λ2,λ
-
2,λ3 相对应)所对应的特征向量,消去方程两

端相同的项,方程(22)可化简为:

Q-1(t)g(Ωt)+RK
︿1=[v2,v-2,v3]R1

d+
∂K
︿1

∂t
(23)

考虑弗洛凯标准型中实数矩阵R,将其分解为

R=MΔM-1,Δ 为对角矩阵.引入坐标变换K
︿1=

MK
-1

 

,由于特征矩阵和特征向量之间满足如下关系

1 0 0
0 1 0
0 0 1
0 0 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=M-1[v2,v-2,v3]

方程(23)可写为:

M-1Q-1(t)g(Ωt)+ΔK
-1=

(R1
d)(1)

(R1
d)(2)

(R1
d)(3)

 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

+
∂K

-1

∂t
 

(24)

需要强调的是,这里建立的降阶模型K0 是三

维的,即包含λ2、λ
-
2、λ3 对应的特征向量所张成的

特征子空间.由于g(Ωt)为谐波激励,其形已经在

式(15)中给出.因此可以将其转化为指数形式,

g(Ωt)=g+
 

eiΩt+g-
 

e-iΩt,整理(24)可以得到:

M-1Q-1(t)(g+eiΩt+g-e-iΩt)-

(R1
d)(1)

(R1
d)(2)

(R1
d)(3)

 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

 =
∂K

-1

∂t -ΔK
-1

     

(25)

由于激励频率的唯一性,可考虑两类频率i(Ω+
kωn

 )t和i(-Ω+kωn
 )t.通过采用待定系数法,令

K
-1 =(K

-1)+ ei(Ω+kω)t +(K
-1)- ei(-Ω+kω)t,R1

d =
(R1

d)+ei
(Ω+kω)t+(R1

d)-ei
(-Ω+kω)t,可以求得:

K1=Q(t)M[i(Ω+kω)*I-Δ]-1 ˙

 [M-1Q-1(t)g+eiΩt-(R1
d)+]+

 Q(t)M[i(-Ω+kω)*I-Δ]-1 ˙

 [M-1Q-1(t)g-e-iΩt-(R1
d)-] (26)

其中,由于不变方程(8)具有多解性,R1
d 的系数可

以任意选取.考虑到系统是一阶系统,即k 仅在1
或-1处傅里叶展开有较大的值,这将会导致系统

外激励与内激励频率相近的时候会产生共振,而
即:Ω≈ω.这种情况下,Ω-ω≈0或ω-Ω≈0,这
将会导致[i(Ω+kω)*I-Δ]-1 或[i(-Ω+kω)*
I-Δ]-1 的对角元素的第三项趋近于0(Δ 为特征

矩阵,第三项特征值为0),从而最终由于其处于分

母上产生极大的数值.由于在当前的动力学降阶的

设置中,这种数值过大会导致其超过降阶的边界,

而导致结果的不稳.为了避免这类近共振的数值问

题,通常会考虑在对应的项上选取特殊的R1
d,使其

对应项的分子为0.
  

因此对于第三项的近内共振的情况,这里考虑

[M-1Q-1(t)g+eiΩt](3)=(R1
d)+(3)

[M-1Q-1(t)g-eiΩt](3)=(R1
d)-(3) (27)
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以消除共振所带来的影响.综上所述,可将受激励

下自激系统的降阶模型写为:

K=K0+􀆠K1

Rd=R0
d+􀆠R1

d
              (28)

为了验证该降价模型的有效性,取与上一节中相同

的转子与定子碰摩模型参数,即β=0.11,ξ=0.05,

γ=0.05,R0=1.05,μ=0.1.图3展示了在􀆠=0.01,

Ω=0.3时,系统(15)的准周期碰摩响应在X-Y 平

面投影轨迹.由于自激系统具有占优的自激能量,

而在该激励频率的外激能量相对较小,该准周期解

表现为自激频率占优的类周期响应.

图3 带交叉耦合的转子定子碰摩模型的准周期解,􀆠=0.01,Ω=0.3
Fig.3 The

 

quasi-periodic
 

solution
 

of
 

the
 

rotor-stator
 

rubbing
 

model
 

with
 

cross-coupling
 

stiffness,􀆠=0.01,Ω=0.3

下面将比较降价模型和完整模型计算的准周

期响应的幅频曲线,展示降价模型的有效性.设定

外激励的参数为:
 

􀆠=0.01,Ω=[0.1,1.2].图4给

出了自激转子与定子碰摩系统受外激励下的准周

期解的频响曲线,其中:蓝色虚线为降价模型的计

算结果,红色实线为原系统(15)采用直接积分法得

到的准周期解幅频曲线.

图4 受外激励下自激转子与定子碰摩系统的
准周期响应幅频曲线

Fig.4 Amplitude-frequency
 

response
 

of
 

quasi-periodic
 

system
 

with
 

the
 

self-excited
 

rotor
 

and
 

stator
 

rubbing
 

system
 

under
 

external
 

excitation

计算结果表明:降阶模型可以较好地预测出在锁频

频率以外的系统准周期响应的幅值,但对于锁频区

域附近的幅值仍有较大的误差.需要强调的是,在
锁频频率附近,系统的幅值突然减小,此时原系统

中的准周期响应坍缩为周期响应.

4 结论
  

本文在基于弗洛凯理论的自治自激周期解的

参数化降阶方法基础上,拓展得到受激励下的非自

治自激振动系统的参数化降阶方法.通过采用有激

励情况下的摄动近似方法,得到了受激励下的非自

治自激振动系统的参数化降阶模型,在降阶模型中

包含了系统内在的(自治)振动特性,由此可求得受

激励下的非自治自激振动系统的频响应曲线.
  

本文通过转子与定子碰摩模型,验证了所提受

迫自激系统参数化降阶方法的有效性,与完整模型

的数值积分结果比较,降阶模型在非锁频(共振频

率)区域外有较好的预测精度,但在多频区域内,尽
管定性反映出系统的响应特征,定量预测存在明显

的误差.考虑本文中仅计及一种共振情况,如果要

获取更加精确的预测模型,可能需要考虑更多的频

率组合情况,如:外激励、自激频率以及弗洛凯指数

的虚部等,这些更复杂的情况仍需要今后探索.
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