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Model Reduction of Non-autonomous Self-excited Systems Using Floquet

Theory based Parameterization Method

Fan Shan Hong Ling Jiang Jun'

(State Key Laboratory for Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract Model reduction methods for high-dimensional dynamical systems have consistently constitu-
ted a significant research topic within the field of nonlinear dynamical systems, significantly influencing
the response identification, computation, and prediction of nonlinear vibration systems, soft robots, and
complex structural systems. Building upon the invariant manifold reduced method for autonomous self-
excited vibration systems by parameterization method and Floquet theory, this paper establishes a pa-
rameterization method for reduced model on non-autonomous self-excited vibration systems. By emplo-
ying a perturbation approximation technique, a parameterization reduced-order model for the forced self-
excited system is derived. Using the proposed method, the quasi-periodic solutions and the amplitude-
frequency curves varying with external excitation frequency are predicted for a rotor-stator rubbing mod-
el incorporating cross-coupled stiffness. The results show that the reduced-order model in this paper can

effectively predict the dynamic response of the self-excited vibration system under external force.
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Fig. 1 Contact and friction model of rotor and stator friction:

(a) Diagram of rotor and stator system; (b) The cross-section

of rotor and stator system
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