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摘要 本文采用模型缩聚理论对波纹板结构进行降阶建模,并开展振动特性分析和结构优化研究.首先,采

用相对自由度壳单元结合 Hamilton原理建立波纹板结构的有限元动力学模型,进而应用Craig-Bampton
 

(C-B)
 

法对模型进行降阶处理;同时,将C-B法与遗传算法结合,设计了一套高效的波纹板结构优化流程.通

过与传统有限元方法的对比分析,验证了基于C-B法的相对自由度壳元缩聚模型的准确性.数值算例结果

表明,降阶模型虽然会略微牺牲计算精度,却可以显著缩减模型规模,自由度数目减少95%以上,计算时间

缩短99%以上,计算效率得到大幅提升.此外,通过两组典型算例验证了基于C-B法的遗传算法在结构优化

上的有效性,充分展现了模型缩聚在波纹板动力学分析和结构优化设计中的显著优势.
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Abstract In
 

this
 

paper,
 

a
 

model
 

reduction
 

approach
 

is
 

employed
 

to
 

develop
 

a
 

reduced-order
 

model
 

of
 

a
 

trapezoidal
 

corrugated
 

plate
 

structure
 

for
 

vibration
 

analysis
 

and
 

structural
 

optimization.
 

A
 

finite
 

element
 

dynamic
 

model
 

of
 

the
 

corrugated
 

plate
 

is
 

first
 

established
 

using
 

relative
 

degree
 

of
 

freedom
 

shell
 

elements
 

combined
 

with
 

Hamilton's
 

principle.
 

The
 

model
 

is
 

then
 

reduced
 

using
 

the
 

Craig-Bampton
 

(C-B)
 

method.
 

Furthermore,
 

an
 

efficient
 

optimization
 

framework
 

for
 

the
 

corrugated
 

plate
 

structure
 

is
 

designed
 

by
 

in-
tegrating

 

the
 

C-B
 

method
 

with
 

a
 

genetic
 

algorithm.
 

The
 

accuracy
 

of
 

the
 

reduced-order
 

model
 

based
 

on
 

the
 

C-B
 

method
 

is
 

validated
 

through
 

a
 

comparative
 

analysis
 

with
 

the
 

traditional
 

finite
 

element
 

method.
 

Numerical
 

examples
 

demonstrate
 

that,
 

although
 

computational
 

accuracy
 

is
 

slightly
 

sacrificed,
 

the
 

re-
duced

 

model
 

significantly
 

decreases
 

the
 

model
 

size,
 

with
 

degrees
 

of
 

freedom
 

reduced
 

by
 

over
 

95%
 

and
 

computational
 

time
 

shortened
 

by
 

more
 

than
 

99%,
 

resulting
 

in
 

a
 

substantial
 

improvement
 

in
 

computa-
tional

 

efficiency.
 

Additionally,
 

the
 

effectiveness
 

of
 

the
 

genetic
 

algorithm
 

based
 

on
 

the
 

C-B
 

method
 

is
 

ver-
ified

 

through
 

two
 

typical
 

optimization
 

examples,
 

showcasing
 

the
 

notable
 

advantages
 

of
 

model
 

reduction
 

in
 

the
 

dynamic
 

analysis
 

and
 

structural
 

optimization
 

of
 

corrugated
 

plates.
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引言
  

波纹板由于波浪形状赋予了其独特的力学特

性,有着较大的比刚度与比强度,同时还可以有效

分散应力、减少变形,广泛应用于建筑与结构工程、

航空航天以及交通运输等领域.对波纹板进行动力

学分析和结构优化,对于提升其综合性能具有重要

的工程意义.
从20世纪80年代开始,国内外学者对波纹板

的动力学特性分析[1-6]和结构优化[7-9]展开了广泛

研究.作为一种特殊的点阵结构,学者们依据等效

思想,将波纹板等效为梁、板结构,采用假设模态

法、有限元法及其他分析方法,对波纹板结构进行

了深入的研究.其中,Zhuang等[10]提出了一种基

于均质化技术和分层理论的梯形波纹夹芯板模型,

将整个夹芯板等效为三层连续体,通过假设模态法

评估了结构的频率、阵型与颤振速度.Zheng等[11]

基于能量法将梯形和正弦波纹板均质化为各向同

性板,利用假设模态法建立复合材料夹芯板的气动

弹性方程,揭示了颤振机理,评估了波纹板在超声

速流中的稳定性.Kim等[12]推导了等距横钢制波

纹板的等效性能,并利用有限元法对比了等效波纹

板与正交各项异性板的抗弯特性.郑宇宁等[13]推

导了波纹板等效拉伸和弯曲刚度模型,结合有限元

思想计算出复合材料波纹板临界剪切屈曲载荷.虽
然采用等效方法对波纹板进行振动分析可以简化

分析流程,但要求波纹板等距、等波顶宽度甚至等

波纹角,较大限制了波纹板的可设计性.
  

随着计算机性能的不断提升,采用有限元方法

并选用多种类型单元对波纹板进行精细建模,逐渐

开始 取 代 传 统 的 等 效 建 模 思 想.其 中,大 量 学

者[14,15]采用考虑了一阶剪切变形理论的壳单元对

波纹板的每个平板进行建模,通过坐标转换矩阵将

不同坐标系内的板单元组合在一起.但不同学者进

行坐标转换时,在刚度矩阵的对应位置添加的刚度

系数不同,同时由于刚度系数的大小会影响振动分

析的结果且刚度系数目前并没有明确的定义.这导

致采用一阶剪切变形壳元对波纹板进行振动分析

仍存在计算精度不够等问题.同样的,实体单元的

泛用性使得波纹板的振动特性得到了进一步的研

究[16,17],但波纹板作为一种特殊的薄壁结构,不同

方向上的刚度相差过大,采用实体单元可能会出现

数值困难,只能通过加密网格来加以应对.基于实

体单元,学者开发出了相对自由度壳元.例如,Cen
等[18]等采用相对自由度壳元为旋转圆柱壳进行建

模,结合子结构法获取完整结构的屈曲载荷和模

态.Xue等[19]基于有限元法,设计了一种特殊的相

对自由度壳元,依据此单元准确描述了夹芯结构的

热结构行为.陈丽华等[20]构造了一种带有沙漏控

制的相对自由度壳元并提出了一种新的有限元冲

击算法,提高了线性和非线性问题的计算效率.Li
等[21]开发了一种多层相对自由度壳元,以较为粗

糙的网格数量为任意层数的复合壳进行建模,并获

得足够精确的振动分析结果.但即使相对自由度壳

元相较于实体单元对于网格的需求已经降低了许

多,但当计算结构复杂的庞大模型时,高额的计算

成本依旧是亟待解决的问题.
  

通过上述文献综述可以发现,国内外学者对波

纹板的振动分析和结构优化方法进行了大量的研

究,但这些方法都存在着计算精度不足、计算成本

过高等缺陷,如何快速精确地对波纹板进行振动分

析和结构优化,依旧值得关注.本文以梯形波纹板

作为主体,基于有限元法,采用相对自由度壳元结

合Hamilton原理,建立波纹板结构动力学分析模

型.之后,通过C-B法对结构模型降阶,并对缩聚模

型进行振动特性分析和结构优化.本文的研究将为

波纹板乃至点阵结构的振动分析和结构优化提供

新的研究思路.
  

本文第一节推导了相对自由度壳元的理论并

对C-B法理论进行了详细的阐述;第二节对比了相

对自由度壳元和一阶剪切变形壳元的优势与局限,

同时比较了完整模型和缩聚模型在计算精度和计

算效率方面的表现,并通过遗传算法对两个模型进

行结构优化.

1 模型建立与降阶
  

本节详细描述了相对自由度壳元和C-B法的

理论推导过程,并分析了采用C-B法对波纹板结构

进行模型缩聚时的计算优势.C-B法作为一种经典

的子结构降阶方法,具有良好的通用性与适应性,

不依赖于结构的具体形状、几何尺寸或边界条件,

因而可广泛应用于各类复杂结构的降阶和计算.基
于便于阐述和验证等方面的考虑,选择具有典型特

征的梯形波纹板结构作为示例说明.在实际应用
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中,该方法同样适用于其他形式的波纹板(比如圆

形波纹板、U形波纹板等)乃至更一般的结构形式,

相关的建模流程和求解策略可以直接移植,无需根

据结构修改方法.

1.1 基于相对自由度壳元的建模方法
  

相对自由度壳元的本质仍为等参元.然而,传
统等参元在分析薄壁结构时,沿着厚度方向的刚度

相较于其他两个方向相差较大,导致求解过程中出

现舍入误差和精度损失等数值计算问题.通过对原

等参元结点进行线性变换,用相对位移代替之前的

绝对位移,新的相对自由度壳元可以避免上述问

题.综合考虑计算效率和简便程度,选择相对自由

度壳元作为波纹板有限元建模的单元类型.
  

梯形波纹板如图1所示,其中W 为波纹板的

横向长度,t为波纹板的厚度,L1 为波底两侧的长

度,L2 为波形单元的波顶宽度,H 为波形单元的

波高,波纹角为α.

图1 梯形波纹板示意图
Fig.1 Schematic

 

diagram
 

of
 

trapezoidal
 

corrugated
 

plates

图2(a)为16结点等参元,图2(b)为相对自由

度壳元.为了便于区分两组单元的位移与坐标,将
三维等参元的位移和坐标称为绝对位移和绝对坐

标,将相对自由度壳元的位移和坐标称为相对位移

和相对坐标.
 

通过插值可以获得16结点等参元的位移和坐

标,表达式如下:

u
v
w

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨
􀮧

􀪁􀪁
􀪁􀪁 =∑

16

i=1
Ni

ui

vi

wi

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨
􀮧

􀪁􀪁
􀪁􀪁 (1)

x
y
z

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨
􀮧

􀪁􀪁
􀪁􀪁 =∑

16

i=1
Ni

xi

yi

zi

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨
􀮧

􀪁􀪁
􀪁􀪁 (2)

其中棱中点结点的形函数为:

Ni=
1
4
(1-ξ2)(1+ηηi)(1+ζζi),

  

(i=9,11,13,15)

Ni=
1
4
(1+ξξi)(1-η2)(1+ζζi),

  

(i=10,12,14,16)

(3)

棱端点结点的形函数为:

 Ni= N*
i -

1
2
(Nk -Nl),

  

(i=1,2,…,8) (4)

其中,

N*
i =

1
8
(1+ξξi)(1+ηηi)(1+ζζi)

k和l分别代表与结点i相邻的两个棱中结点的

编号.

图2 两单元节点分布及位移定义示意:
 

(a)16节点三维等参单元;
 

(b)相对自由度壳元

Fig.2 Illustration
 

of
 

the
 

nodal
 

distribution
 

and
 

displacement
 

definitions
 

of
 

the
 

two
 

elements:
 

(a)16-node
 

3D
 

isoparametric
 

element;
 

(b)Shell
 

element
 

of
 

relative
 

degrees
 

of
 

freedom
  

相对位移和相对坐标与绝对位移和绝对坐标

的关系为:

u-i=
1
2
(ui-ui+4)

u-i+4=
1
2
(ui+ui+4)

􀮦

􀮨

􀮧

􀪁
􀪁􀪁
􀪁
􀪁

,(i=1,2,3,4,9,10,11,12)

(5)

x-i=
1
2
(xi-xi+4)

x-i+4=
1
2
(xi+xi+4)

􀮦

􀮨

􀮧

􀪁
􀪁􀪁
􀪁
􀪁

,(i=1,2,3,4,9,10,11,12)

(6)

剩余结点位移u-、v- 和坐标y-、z- 的形式与上述表达

式相同.
由上述关系可知,相对自由度壳元的结点i(i=

5,6,7,8,13,14,15,16)的位移与坐标即为等参元结

点i与结点i
 

-4的连线与中面的交点的位移与坐

标,而相对自由度壳元的结点i-4的位移与坐标即

55



动 力 学 与 控 制 学 报 2025年第23卷

为原等参元结点i-4到中面的位移与距离.
简化后,相对自由度壳元的位移和坐标表示为

如下形式:

u-

v-

w-

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁 =∑

16

i=1
N
-

i

u-i

v-i

w-i

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁
􀪁

(7)
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􀮦

􀮨

􀮧

􀪁
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16
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N
-

i
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􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁
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(8)

  

式(7)可以写为:

u-

v-

w-

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁 = D1 D2 … D16  

q1
q2
︙

q16

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁􀪁

􀪁
􀪁􀪁

=Diqi,

(i=1,2,…16) (9)

其中qi=u-i,v-i,w-i  T ,

Di=

N
-

i 0 0

0 N
-

i 0

0 0 N
-

i

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,
  

(i=1,2,…16) (10)
  

单元应变位移关系可表示为:

ε=

εx

εy

εz

γxy

γxz

γyz
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􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

= [B1 B2 … B16]

q1
q2
︙

q16

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁􀪁

􀪁
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 =Biqi (11)

其中

 Bi=

∂N
-

i

∂x 0 0
∂N

-
i

∂y
∂N

-
i

∂z 0

0
∂N

-
i

∂y
0

∂N
-

i

∂x 0
∂N

-
i

∂z

0 0
∂N

-
i
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-
i

∂x
∂N

-
i
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􀭡

􀪁
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􀪁
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􀪁􀪁

T

(12)

  

本构方程可表示为如下形式:

σ={σx σy σz τxy τxz τyz}T=Qε
(13)

其中,E 为弹性模量,μ 为泊松比,弹性矩阵Q 的具

体形式见附录1.
  

通过Hamilton原理建立运动学方程如下:

∫
t

0
δ(T-U)+δW  

 

dt=0 (14)

其中T、U 和δW 分别代表动能、势能以及外力产

生的虚功,它们可通过下式获得:

T=
1
2∫V

 ρ
∂u-

∂t  
2

+
∂v-

∂t  
2

+
∂w-

∂t  
2􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 dV (15)

U=
1
2∫V

σTεdV (16)

δW =F0·δu (17)

其中ρ 为材料密度,V 为单元体积,F0 为外力

矢量.
  

单元体积可以由下式给出:

 
 

dV=dζ·(dξ×dη
→)

 =

∂x
∂ζ
∂y
∂ζ
∂z
∂ζ

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

·

∂y
∂ξ
∂z
∂η

-
∂z
∂ξ
∂y
∂η

∂x
∂η
∂z
∂ξ

-
∂x
∂ξ
∂z
∂η

∂x
∂ξ
∂y
∂η

-
∂y
∂ξ
∂x
∂η

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

dξdηdζ

 =|J| (18)
  

通过计算动能和势能,单元的运动方程为

Meq
··
e(t)+Keqe(t)=Fe (19)

其中Fe 为单元外力矢量,Me 和Ke 分别为单元的

质量矩阵和刚度矩阵,可以通过下式得出:

Me=∫
1

-1∫
1

-1∫
1

-1
ρDTD|J|dξdηdζ (20)

Ke=∫
1

1∫
1

-1∫
1

-1
BTQB|J|dξdηdζ (21)

Fe=(F0D)T (22)

1.2 基于C-B法的模型降阶
  

对于复杂、循环结构的振动分析,将C-B法引

入到模型的降阶过程中.如图3所示,将波纹板分

成n 个波形单元,每个波形单元视为一个子结构,

共n 个子结构;子结构与子结构之间通过红线标注

的界面边界连接.
  

根据C-B法,每个波形单元的自由度被划分为

两个部分:界面自由度和内部自由度.因此,子结构
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的运动方程如下所示:

Mmm Mms

Msm Mss

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

q
··
m

q
··

s

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 +

Kmm Kms

Ksm Kss

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 qm

qs

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =

Fm

Fs+Rs

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

(23)

图3 n个波形单元的波纹板

Fig.3 Corrugated
 

plate
 

with
 

n
 

corrugated
 

units

其中下标“m”和“s”分别代表子结构的内部和界

面,Rs 为子结构之间的内力.
  

界面自由度的结点位移由如下两个部分组成:

qm=qms+qmm (24)

其中qms 为实际中不受约束的界面自由度,可以通

过下式的Guyan法求解获得:

qms=-K-1
mmKmsqs (25)

由子结构界面固定时的振动产生的qmm 可以通过

对下列方程求解得到:

Mmmq
··mm+Kmmqmm=0 (26)

  

根据模态截断的思想,高阶模态对结构的能量

贡献相对较小,因此有:

qmm=ΦNrN= ΦL
N ΦH

N  
rL
N

rH
N  ≈ΦL

NrL
N (27)

其中ΦN 为当该子结构界面固定时的正则模态矩

阵,“L”和“H”分别代表模态的低阶与高阶.
  

经过模态截断后,子结构的位移矢量可 以

写为:

q=
qms+qmm

qs  = ΦL
N -K-1

mmKms

0 I

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 rL

qs  
 =Φc

rL

qs  (28)

其中Φc 为C-B法的第一次坐标转换矩阵.
  

经过第一次坐标转换后,质量矩阵和刚度矩阵

写为如下形式:

K
-

=ΦT
cKΦc=

Λmm 0

0 K
-
ss

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 (29)

M
-

=ΦT
cMΦc=

Imm M
-
ms

M
-
sm M

-
ss

􀭠

􀭡

􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁 (30)

其中,Λmm 为 m 阶对角矩阵,Imm 为 m 阶单位

矩阵.
  

与此同时,子结构的外载荷转换为:

F
-

=ΦT
c

Fm

Fs+Rs

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥
􀪁
􀪁􀪁 (31)

  

同样的,广义坐标在经过第一次坐标转换后可

写为如下形式:

q=
ΦL
N -K-1

mmKms

0 I

􀭠

􀭡
􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 rN

qs

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =Φc

Pm

Ps

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =ΦcP

(32)
  

经过上述转换后,子结构的运动方程可以表示

为如下形式:

M
-
P
··
+K

-
P=F

- (33)
  

值得注意的是,此时的界面自由度仍然保留在

物理空间,这不仅为子结构的装配带来了极大便

利,还使得在完成缩聚后,无需进行模态还原即可

直接观察界面边界的模态特征.
  

由图3可知,完整梯形波纹板的运动方程由n
个子结构组合而成:

M
-
1 0 … 0

0 M
-
2 … 0

︙ ︙ ⋱ ︙

0 0 … M
-

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

P
··

1

P
··

2

︙

P
··

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

+

 

K
-
1 0 … 0

0 K
-
2 … 0

︙ ︙ ⋱ ︙

0 0 … K
-

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

P1

P2

︙

Pn

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

=

F
-
1

F
-
2

︙

F
-

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(34)
  

完整结构的坐标矢量为:

P=P1 P2 … Pn  T (35)

其中

P1=Pm
1 Ps2

1  T

Pn =Pm
n Ps1

n  T

Pi=Pm
i Ps1

i Ps2
i  T (36)

其中i=2,3,…,n-1,上标“m”和“s”分别代表子

结构的内部与界面.
  

由于子结构间是连续的,因此有:

Ps1
j =Ps2

j-1,
 

(j=2,3,…,n) (37)
  

通过合并不同子结构间相同的界面坐标矢量,

完整结构的坐标矢量可以写为:
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P1 P2 … Pn  T=TCP (38)

其中TC 为第二次坐标转换矩阵.
  

基于第二次坐标转换,完整结构的运动方程可

以表示为:

M
--

P
··
+K

--

P=F
-- (39)

其中:

M
--

=TT
C

M
-
1 0 … 0

0 M
-
2 … 0

︙ ︙ ⋱ ︙

0 0 … M
-

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

TC (40)

K
--

=TT
C

K
-
1 0 … 0

0 K
-
2 … 0

︙ ︙ ⋱ ︙

0 0 … K
-

n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

TC (41)

F
--

=TT
C F

-
1 F

-
2 … F

-
n  

T (42)
  

至此,梯形波纹板的模型缩聚全部完成.通过

数据恢复矩阵TRM 将广义坐标从模态空间转换回

物理空间,即:

q1 q2 … qn  T=TRMP (43)

其中

TRM =

Φc,1 0 … 0

0 Φc,2 … 0
︙ ︙ ⋱ ︙

0 0 … Φc,n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

TC (44)

由C-B法理论推导过程可知,在对等波形单元

的梯形波纹板进行缩聚时,仅计算一个子结构的相

关矩阵即可完成完整结构的振动分析,显著降低了

计算时间.同时将子结构模型降阶可以进一步简化

优化过程,提高优化效率.

2 数值算例
  

本节首先对比了相对自由度壳元和一阶剪切

变形壳元对悬臂折板结构振动分析的计算结果,其
次针对两个典型波纹板模型,比较了完整模型与缩

聚模型在振动特性分析方面的精度与效率,最后对

上述的波纹板模型进行了结构优化设计.
 

2.1 单元对比
  

在采用考虑了一阶剪切变形的壳元对折板结

构进行建模时,壳元需要通过坐标转换从局部坐标

系统一到整体坐标系.需要指出的是,在坐标转换

前,需要在各自矩阵的对应位置添加零行和零列,

并在刚度矩阵的对应结点上给定刚度系数Kθz.当
前研究中关于刚度系数的具体数值定义尚未统一,

例如:
 

Niyogi等[11]给出的刚度系数为刚度矩阵中

主对角线项最小值的千分之一,
 

Thinh[12]给出刚

度系数为刚度矩阵中主对角线项最小值的万分之

一以下.现对悬臂折板模型采用考虑了一阶剪切变

形的壳元和相对自由度壳元进行建模分析,考虑了

一阶剪切变形的壳元采用不同的刚度系数,并与

COMSOL仿真结果进行对比.
  

折板模型如图4所示,板长a1=0.5
 

m,a2=
0.5

 

m,板宽b=1
 

m,厚度h=0.02
 

m,折板角θ=
150°,折板的材料参数为密度ρ=1000

 

kg/m3、弹
性模量E=10.92

 

GPa.采用相对自由度壳元和一

阶剪切变形壳元时创建的网格数量相同.对比结果

如表1所示,括号内的比值为当前频率与仿真解的

误差.

表1 悬臂折板模型频率对比

Table
 

1 Frequency
 

comparison
 

of
 

cantilever
 

folded
 

plate
 

structure

频率/Hz f1 f2 f3 f4

COMSOL
 

(实体单元) 26.8 44.1 97.3 103.6

Kθz 取千分之一
 

(壳元) 29.8
(11.2%)

71.5
(62.1%)

99.5
(2.2%)

162.1
(56.5%)

Kθz 取万分之一
 

(壳元) 27.8
(3.7%)

64.1
(45.3%)

97.7
(0.4%)

153.8
(48.4%)

相对自由度壳元 27.1
(1.1%)

45.6
(3.4%)

102.4
(5.2%)

108.6
(4.8%)

图4 折板结构模型

Fig.4 Folded
 

plate
 

structure

由对比结果可知,在采用考虑一阶剪切变形的

壳元时,刚度系数Kθz 的选择会影响计算结果.而
与之相比,相对自由度壳元则可以获得较高精度分

析结果.

2.2 模型验证
  

为了验证基于C-B法的相对自由度壳元缩聚

模型在计算精度、计算效率等方面的优势,设计两
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个梯形波纹板模型进行数值仿真,分别用于模拟工

程中的方形结构(模型1)与细长矩形结构(模型

2).模型1由八个波形单元组成,每个波形单元的

几何尺寸为:横向长度W=0.28
 

m、波纹板的厚度

t=0.001
 

m、波底两侧长L1=0.004
 

m、波顶宽度

L2=0.008
 

m、波高 H=0.016
 

m、波纹角α=60°.
模型2由10个波形单元组成,每个波形单元的几

何尺寸为:横向长度W=0.08
 

m、波底两侧长L1=
0.008

 

m、波 顶 宽 度 L2=0.016
 

m、波 高 H =
0.016

 

m、波纹角α=45°.两个模型的材料参数为:

密度ρ=1000
 

kg/m3、弹性模量E=10.92
 

GPa.为
了验证有限元计算程序的正确性以及缩聚模型的

计算效率,通过有限元法计算完整模型和缩聚模型

以及COMSOL仿真软件实体单元获取两个两端

固支的梯形波纹板模型的前四阶固有频率和模态,

如表2和表3所示,括号内为当前自由度数与仿真

软件自由度数的比值以及当前频率与仿真软件频

率的误差.
  

根据两组频率与模态结果的对比可知,采用相

对自由度壳元的完整模型理论解与采用实体单元

的COMSOL仿真解基本吻合,但两组完整模型的

自由度数均仅为仿真软件的14%左右,同样的两

组缩聚模型在基本不降低计算精度的前提下,将自

由度数进一步缩聚到仿真模型的0.6%.对比计算

时间,缩聚模型相较于完整模型由27.3
 

s降低至

0.074
 

s,降低幅度约为99.7%.综上所述,模型缩

聚保证了精度与效率的平衡,在提升计算效率的同

时保证了较高的计算精度.

表2 模型1固有频率和模态
Table

 

2 Natural
 

frequencies
 

and
 

mode
 

shapes
 

of
 

model
 

1

频率/Hz f1 f2 f3 f4

COMSOL仿真解
(自由度数237612)

完整模型理论解
[自由度数33966

 

(14.3%)]

缩聚模型理论解
[自由度数1378

 

(0.6%)]

表3 模型2固有频率和模态
Table

 

3 Natural
 

frequencies
 

and
 

mode
 

shapes
 

of
 

model
 

2

频率/Hz f1 f2 f3 f4

COMSOL仿真解

(自由度数215806) 7.55
 

Hz 20.81
 

Hz 33.36
 

Hz 40.38
 

Hz

完整模型理论解

(自由度数30846
 

(14.3%)) 8.03
 

Hz
 

(5.9%) 21.80
 

Hz
 

(4.5%) 33.55
 

Hz
 

(0.5%) 41.09
 

Hz
 

(1.7%)

缩聚模型理论解

(自由度数1316
 

(0.6%)) 8.19
 

Hz
 

(7.8%) 22.54
 

Hz
 

(7.7
 

%) 33.61
 

Hz
 

(0.7%) 42.44
 

Hz
 

(4.8%)
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2.3 结构优化
  

为了进一步提升结构性能和满足特定设计要

求,可以通过修改波纹板中每个波形单元的波纹

角、波顶宽度等一系列几何参数,从均匀波纹板结

构向非均匀的方向转变,以此来达到抑制振动、控
制结构振动带隙等目的.当优化对象为其他类型的

波纹结构(如圆形波纹板)时,仅需在优化过程中将

相应的圆形波形单元作为预设染色体嵌入算法中

即可,整体优化流程无需修改.模型缩聚方法在应

用于波纹板动力学分析方面的有效性与准确性已

经通过上述数值分析得到了验证,现在对上述的两

个结构进行优化.传统的优化思想是通过将预定义

的波形单元相关矩阵储存,在优化过程中调用,但
每次迭代需要对完整波纹板的矩阵进行求解,消耗

大量时间,而基于模型缩聚的优化方法可以将缩聚

后的波形单元矩阵储存,调用时仅提取缩聚矩阵,

极大降低迭代的时间.
  

选择遗传算法作为优化方法,将表中列出的

64种预定义波形单元作为遗传算法的染色体,结
构的每个波形单元从其中选出,要求优化后波纹板

的展开长度与优化前一致.模型1的优化目标是将

第一阶模态的振型峰值集中在结构的一侧,模型2
的优化目标是将第二节模态左侧的振动尽可能地

抑制.在遗传算法优化过程中,用欧几里得距离表

示结构与预期结果的接近程度,

min
X
f(X)=‖ϕt(X)-ϕc‖2= ∑

i

(ϕt,i-ϕc,i)
2

(45)

其中X 是当前基因选择下的一组波形单元,X
 

=
 

{x1,x2,…,xN},ϕt(X)是选择当前基因下的波纹

板归一化模态矢量,ϕc 是预期结果的归一化模态

矢量.
  

将不同波形单元的选择以及波纹板展开长度

作为优化过程中的约束,有:

xi ∈ s1,s2,…,s32  ,
  

(i=1,2,…,N)(46)

|LX -Lc|≤ψ (47)
   

其中,s代表预设的64种波形单元,xi 表示优化结

构中第i个波形单元的构型,N 为优化结构的总波

形单元数,LX 和Lc 分别为优化前波纹板的展开长

度和优化后的展开长度,ψ 为预设的阈值,若严格

遵守优化前后波纹板展开长度相等这一约束条件,

则在优化过程中仅会出现有限个优化结果,同时预

期的优化结果可能不存在,因此设置阈值扩展设计

空间,提升设计灵活性.预设的波形单元构型如表

4所示.
  

图5为两组模型模态优化前后的对比.由于受

限于材料种类的单一性、可调几何参数幅度的有限

性以及波形单元数量较少等因素,本轮优化所得性

能提升幅度相对有限,尚未表现出显著的优化效

果,但通过图5依旧可以看出,模型1的模态峰值

位置向左侧移动;模型2左侧振动峰相较于优化前

的第二阶模态,已经得到了较大程度的抑制.上述

优化目标的设置旨在验证上述流程在不同振动控

制需求下的适应能力:模型1通过迁移第一阶模态

的振型峰值,展示了该方法在控制整体振动分布方

面的有效性;模型2则通过抑制第二阶模态中局部

区域的响应,体现了其在多峰响应调控中的选择性

控制能力.结果表明,该流程不仅能够实现振动峰

的迁移,还具备针对性地抑制局部振动峰的能力,

从而验证了其在波纹板结构优化设计中的可行性

与实用价值.
表4 预设波形单元参数

Table
 

4 Preset
 

waveform
 

unit
 

parameters

规格编号 1 2 3 4

波纹角α
 

/(°) 30 40 50 60

波底两侧L1 /mm 2 4 8 12

波顶宽度L2 /mm 4 8 12 24

图5 模型1(左)和模型2(右)优化前后的模态对比

Fig.5 modal
 

comparison
 

of
 

model
 

1
 

(left)
 

and
 

model
 

2
 

(right)
 

before
 

and
 

after
 

optimization

3 结论
  

本文采用了基于C-B模型缩聚的有限元法对

梯形波纹板进行动力学分析和结构优化.具体以相

对自由度壳元为波纹板建模,通过C-B法对完整结

构进行子结构划分和模型降阶,并利用遗传算法对

波纹板进行结构优化.需要再次说明的是,尽管本

文以具有代表性的梯形波纹板为例进行说明,但所

06
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采用的动力学分析与结构优化的建模流程和求解

策略并不依赖于具体结构形式.在应用于其他类型

波纹板结构时,仅在建模阶段因几何差异造成的网

格划分不同,整体计算流程无需额外调整.因此,出
于篇幅控制及避免内容重复的考虑,本文不再对其

他波纹板结构进行展开,相关分析可直接参照本文

所述方法进行推广应用.主要结论如下:
  

(1)
 

通过对基于相对自由度壳单元的完整模

型与基于实体单元的
 

COMSOL
 

模型在频率与模

态特性方面的对比分析,可以发现相对自由度壳单

元在薄壁结构建模中能够以较低的单元数量实现

较高的计算精度.
  

(2)
 

通过完整模型与缩聚模型的计算结果对

比可以得出,缩聚模型在维持较高计算精度的同

时,大幅降低了模型的自由度数,极大地提高了计

算效率.
  

(3)
 

基于模型缩聚理论,非均匀波纹板的优化

过程得到了显著简化.通过在优化过程中引入已缩

聚的模型矩阵以替代完整矩阵,显著提升了遗传算

法在结构优化中的计算效率.
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附录1
  

弹性常数矩阵Q 为:

Q=
E

1+μ  1-2μ  

1-μ μ μ 0 0 0

μ 1-μ μ 0 0 0

μ μ 1-μ 0 0 0

0 0 0 1-2μ
2 0 0

0 0 0 0 1-2μ
2 0

0 0 0 0 0 1-2μ
2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

其中,E 为弹性模量,μ 为泊松比.

26


