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Reduced Dynamic Modeling and Simulation of Tracked Vehicles Based on

Road Geometry Constraints”
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Abstract Tracked vehicles possess excellent terrain adaptability and are widely used in various complex
terrains. Simulation of tracked vehicles based on dynamic modeling is an effective means to study the dy-
namic performance of tracked vehicles and optimize design parameters. The complex contact between the
tracked vehicle and the ground often reduces the efficiency and stability of solving the tracked vehicle
model. This paper proposes a modeling method that embeds the ground as a geometric constraint into
the dynamic model. Given the ground and wheel radius, a nominal wheel center trajectory that does not
depend on the vehicle’s driving speed and other vehicle parameters can be pre-calculated. The contact be-
tween the wheel and the ground can be transformed into a constraint that the wheel center falls on the
nominal trajectory. Based on the magnitude of the ground support force on the load wheels and the posi-
tion of the wheel center, it can be determined when the wheel contacts the ground. This allows the
model to effectively simulate the passing ability of tracked vehicles under challenging ground conditions.
The proposed model is validated through simulations on sinusoidal terrains of different frequencies and

the terrain with a pothole.
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Table 1 Parameters of the tracked vehicle

Parameter Symbol Value
Coordinate of torsion bar 1 Tep, (—2.1m,—0.77 m)
Coordinate of torsion bar 2 Fep,  (—1.36 m,—0.77 m)
Coordinate of torsion bar 3 Fep,  (—0.66 m,—0.77 m)
Coordinate of torsion bar 4 Tep, (—0.22m,—0.77 m)
Coordinate of torsion bar 5 Fep, (1.15 m,—0.77 m)
Coordinate of torsion bar 6 Tepg (2.1 m,—0.77 m)
Coordinate of the sprocket Few, (—2.7m,—0.77 m)

Coordinate of the idler Tew, (3 m,—0.31 m)
Chasis mass m 7800 kg
Chasis moment of inertia Iy 31 000 kgm®
Load wheel mass m,, 190 kg
Sprocket mass m g, 370 kg
Idler mass mig, 190 kg
Balance elbow length l, 0.46 m
Load wheel radius R, 0.3 m
Sprocket radius R, 0.216 m
Vertical damping coefficient c, 100 kg/s
Horizontal damping coefficient cy 5000 kg/s
Pitch damping coefficient cy 30 000 kgm®/s
Track stiffness K. 800 000 N
Road friction coefficient " 0.5
Idler friction moment M, 10 Nm
Torsion bar stiffness K 160 000 Nm/rad
Torsion bar damping coefficient Cy 5000 Nms/rad

Fz2 RBIGIE
Table 2 Model validation

Amplitude/m Time/s

Reduced model (w=0.05 m ") 0.1 58
Traditional algorithm (w=0.05 m ") 0.17 280
Reduced model (w=0.02 m™ ') 0.37 59
Traditional algorithm (w=0.02 m™ ") 0.45 275
Reduced model (w=0.5m ") 0. 07 61
Traditional algorithm (w=0.5m ') 0.13 291
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Fig.4 Vibration response of the tracked vehicle
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