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Abstract The theoretical modeling is the critical step to ensure the safe, sustainable and stable operation
of the engineering structure in the design phase, especially in the dynamical characteristics analysis. The
reduced order procedure of the composite structure’s dynamical model is required so as to nonlinear dy-
namic analysis and controller design. However, the traditional dynamical model that established by the
modal function of a single component is based on the classical statically indeterminate boundary condi-

tions. There exists the significantly difference compared with the modes obtained by the whole struc-
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ture. The global mode theory can reveal the coupling effect between rigid motion and flexible deforma-
tion of the structure, and provides the global mode that can accurately reflect the vibration of the com-
bined structure. In this paper, the research progress of the global modal method in the reduced order for
the combined structure dynamic model such as cables, beams and plates in recent years is given. The
solving method for the global mode method of the multi-rigid-flexible coupling system based on the Car-
tesian and Lagrange coordinate is mainly focused. The application of the global modal method in the a-
nalysis of natural characteristics of the complex combined structure is illustrated by the examples such as
the multi-beam rigid connection, cable-beam combination and rigid-flexible coupling spacecraft. Multiple
research results show that the global mode method not only overcomes the dependence on the mode form
and quantity of the traditional method, but also shows the prominent advantage in revealing complex dy-
namic phenomena, optimizing structural design and vibration control.

model reduced, global mode, dynamical characteristics
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Fig. 8 The structure of the multi-beam connected by hinges
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