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Abstract Physics modeling of complex dynamical nonlinear systems is challenging, and the analysis and
design of dynamics of such complex systems face the curse of high-dimensionality. Therefore, it is im-
portant to develop low-dimensional, reliable reduced-order models (ROMs) for them. Spectral submani-
folds (SSMs) have emerged as a powerful tool for constructing ROMs for complex systems. SSMs are
low-dimensional attracting invariant manifolds, and the associated SSM-based ROMs are low-dimension-
al yet exact. They can be obtained in equation-driven and data-driven settings and have been successfully
applied to nonlinear vibrations, fluid dynamics, and control of soft robots. We present a review of recent
advances in the theory of SSMs, model reduction techniques via SSMs, and the various applications of

SSM-based reductions. We conclude this article with an outlook on future developments.
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the governing equations for the state vector x are often unknown
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