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摘要 复杂非线性系统的物理模型具有很高的复杂度,其动力学分析与设计面临高维计算瓶颈,建立其低

维可靠的降阶模型具有重要意义.谱子流形降阶方法作为非线性模型降阶的新进展,已逐渐成为复杂非线

性动力系统模型降阶的有力工具.谱子流形降阶方法基于具有吸引性的低维不变流形,可在方程驱动和数

据驱动两个框架下获得低维精确的降阶模型,已实现将百万自由度的非线性系统降阶到单个自由度,在结

构非线性振动、流体动力学、软体机器人控制等方面获得了成功应用.本文从谱子流形理论、降阶方法及其

在复杂非线性动力系统中的应用三个层面介绍相关研究进展,最后给出谱子流形降阶研究的展望.
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Abstract Physics
 

modeling
 

of
 

complex
 

dynamical
 

nonlinear
 

systems
 

is
 

challenging,
 

and
 

the
 

analysis
 

and
 

design
 

of
 

dynamics
 

of
 

such
 

complex
 

systems
 

face
 

the
 

curse
 

of
 

high-dimensionality.
 

Therefore,
 

it
 

is
 

im-
portant

 

to
 

develop
 

low-dimensional,
 

reliable
 

reduced-order
 

models
 

(ROMs)
 

for
 

them.
 

Spectral
 

submani-
folds

 

(SSMs)
 

have
 

emerged
 

as
 

a
 

powerful
 

tool
 

for
 

constructing
 

ROMs
 

for
 

complex
 

systems.
 

SSMs
 

are
 

low-dimensional
 

attracting
 

invariant
 

manifolds,
 

and
 

the
 

associated
 

SSM-based
 

ROMs
 

are
 

low-dimension-
al

 

yet
 

exact.
 

They
 

can
 

be
 

obtained
 

in
 

equation-driven
 

and
 

data-driven
 

settings
 

and
 

have
 

been
 

successfully
 

applied
 

to
 

nonlinear
 

vibrations,
 

fluid
 

dynamics,
 

and
 

control
 

of
 

soft
 

robots.
 

We
 

present
 

a
 

review
 

of
 

recent
 

advances
 

in
 

the
 

theory
 

of
 

SSMs,
 

model
 

reduction
 

techniques
 

via
 

SSMs,
 

and
 

the
 

various
 

applications
 

of
 

SSM-based
 

reductions.
 

We
 

conclude
 

this
 

article
 

with
 

an
 

outlook
 

on
 

future
 

developments.
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引言
    

在自然和工程中复杂非线性系统比比皆是.从
固体力学中的几何非线性、材料非线性、边界非线

性(接触摩擦等)到流体力学中的湍流,非线性效应

无处不在.随着制造工艺的不断提升,结构设计逐

渐向轻量化、柔性化和细长化方向发展,非线性效

应变得愈发显著.这一现象从微纳尺度的微机电系

统[1]一直延伸到千米量级的大型柔性航天器[2,3].
多物理场耦合也是一类典型的非线性问题,如流体

诱发的振动是装备管路服役安全的制约因素[4,5],
气-固-液耦合是海上漂浮式风机建模需要考虑

的核心力学问题[6].
  

复杂非线性系统的物理建模是其动力学分析

与设计的基础.对于可建模的复杂系统,其控制方

程多为带有复杂边界条件的非线性偏微分方程,解
析求解难度大,需利用数值方法进行离散.由于非

线性效应显著,为了获得可靠的数值模拟结果,必
须采用极高的离散分辨率.这些离散模型的自由度

可高达数百万甚至上千万,数值模拟因此面临高维

计算的瓶颈.针对部分强非线性系统,基于物理方

程的建模困难,如考虑多尺度效应的螺栓接触摩

擦[7],具有滞回现象的水凝胶软材料本构等[8],此
时需直接从复杂系统的数据中提取物理模型,即进

行模型识别.但这些非线性系统的数据呈多尺度、

非光滑、记忆特性等复杂特征,如何从这些复杂数

据中识别出低维的物理模型仍面临重大挑战.
综上,建立复杂非线性系统的低维可靠降阶模

型是一个关键的科学问题.基于降阶模型可有效开

展复杂系统的动力学正反问题研究,从而支持复杂

系统的动力学设计[9,10].谱子流形是近年来发展的

复杂非线性动力系统模型降阶的有力工具,可在方

程驱动和数据驱动两个框架下构造低维降阶模型,

是非线性动力学领域的重要进展,为突破高维非线

性难点提供了可行的解决思路.本文旨在面向国内

同行介绍谱子流形的数学理论、降阶方法及应用研

究进展.

1 模型降阶基本思路

在介绍谱子流形降阶前先阐述模型降阶的基

本思路.方程驱动框架下,模型降阶的基本思路如

图1所示,其中x∈ℝn 是高维的状态向量(
 

n≫1)
而p∈ℂm 是低维的降阶坐标向量.高维系统的控

制方程为

x· =Ax+F(x), (1)

其中F(x)= (|x|2),F ∈  r(r≥1)降阶系统

的动力学为

p
·
=R(p). (2)

模型降阶的两个要素是建立低维降阶坐标和原系

统高维状态向量的映射关系

x=W(p) (3)

和低维坐标的动力学(2).
数据驱动框架下,模型降阶的基本思路如图2

所示.采用数据驱动建模时的已知量为观测的实验

数据,系统的控制方程通常是未知的,这与方程驱

动的框架是不同的.此时需建立观测量y=g(x)
和降阶坐标的映射关系,即y=W(p),和降阶坐标

的动力学(2).

图1 方程驱动框架下模型降阶示意图

Fig.1 Equation-driven
 

model
 

reduction
 

framework

图2 数据驱动框架下模型降阶示意图.y为系统的观测量.和方程
驱动框架(图1)不一样,状态向量x 的控制方程通常是未知的

Fig.2 Data-driven
 

model
 

reduction
 

framework.
 

Here
 

y
 

is
 

a
 

vector
 

of
 

observables.
 

Unlike
 

the
 

case
 

of
 

equation-driven
 

framework
 

(Fig.1),
 

the
 

governing
 

equations
 

for
 

the
 

state
 

vector
 

x
 

are
 

often
 

unknown
  

根据映射W 线性与否,可将模型降阶方法分为

线性和非线性方法.针对线性降阶方法,映射W 由

投影矩阵V 表征,即x=Vp,通过将高维的状态向量

投影到低维的子空间实现降阶.根据V 的不同构造

方式,发展了一系列线性降阶方法,包括方程驱动

下的模态截断(MT)、模态综合法(CMS)[11],数据
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驱动框架下的动态模态分解(DMD)[12],以及融合

了数据和方程的正交模态分解方法(POD)[13].
  

线性方法已被成功用于构造高维线性系统的

低维降阶模型[11],但在应用到非线性问题时存在

若干挑战[14].基于线性投影的降阶难以表征完整

的模态耦合效应,因此其精度高度依赖于投影子空

间V 的选取.该选取和具体问题相关,且通常依赖

于经验和先验知识,例如考虑细长或薄壁弹性结构

的面内拉伸效应时,需要高阶模态来计入面外弯曲

和面内拉伸的耦合效应[15].通常需要通过增加V 中

列向量的数目来检验预测结果的收敛性,从而判别

降阶模型的可靠性,最终得到的降阶模型维数可高

达数十乃至数百维[15,16],依然是高维的非线性系统.
非线性降阶方法中的映射W 是关于降阶坐标

的非线性函数,可有效捕捉可有效捕捉从模态(
 

slave
 

mode)和主模态
 

(master
 

mode)[或从子空间
 

(slave
 

subspace)和主子空间
 

(master
 

subspace)]

的耦合关系,为构造低维精确的降阶模型提供了思

路.非线性降阶方法包括在方程驱动框架下基于中

心流形[13]、非线性模态[14,17,18]和惯性流形[13]的降

阶方法,也包括在数据驱动框架下基于机器学习的

降阶方法[19].
  

非线性降阶方法的核心是利用低维具有吸引

性的不变流形[20](见图3).其中低维保证了降阶模

型的简单性;吸引性则确保初始时刻不在流形上的

轨迹迅速逼近流形,从而保证了其在实验中的可观

测性;不变流形则确保了降阶模型的封闭性和光滑

性.谱子流形(spectral
 

submanifold,
 

SSM)作为一

类具有吸引性的低维不变流形[21],由George
 

Hal-
ler教授在2016年提出,并在近几年得到拓展[20].
SSM在数学上具有清晰的存在性和唯一性条件,

可用于构造低维精确可靠的降阶模型.下面对谱子

图3 基于具有低维吸引特性的不变流形降阶示意图.
p=[x1,…,xm],xred为流形上的降阶轨迹

Fig.3 Schematic
 

of
 

model
 

reduction
 

via
 

low-dimensional,
 

attracting
 

invariant
 

manifold.
 

Here,
 

we
 

havep=[x1,…,xm],
and

 

xredis
 

the
 

reduced
 

trajectory
 

on
 

the
 

manifold

流形理论进行介绍.

2 谱子流形理论
  

本节综述谱子流形理论发展,从线性自治系统

出发,探讨流形的光滑特性和快慢特征,然后基于

不变性拓展到非线性自治系统,并进一步考虑非自

治项(时变外力)、代数约束和非光滑等复杂特征.
在下面的讨论中,我们假定x=0 是动力系统(1)

的一个双曲型平衡点,即矩阵A 的特征值实部均

非零.

2.1 线性自治系统
  

为了阐述谱子流形的基本概念,我们首先考虑

一个二维的线性系统[20]:

x· =-ax,
 

yx
·
=-βy, β>α>0. (4)

该线性系统的特征值为λ1=-α 和λ2=-β,相应

的特征向量为e1=[1;0]和e2=[0;1].方程(4)的
解为

x(t)=x0e-αt,
 

y(t)=y0e-βt , (5)

其中(x0,y0)为初始条件.从方程(5)可以看到x
和y 方向的运动相互独立,这意味着以e1 和e2 分

别为基底的子空间E1 和E2(即x 轴和y 轴)均是

不变子空间,即初始时刻在x/y 轴上的轨迹将限

定在x/y轴上,其中x 运动的衰减速率较慢,故E1

为慢谱子空间,而E2 则为快谱子空间(参见图4).
从方程(5)可以进一步看出,当x0≠0时,通过

消去时间变量t可以得到轨迹线的显示表达

y=cxβ/α,
 

c=y0/xβ/α
0 , (6)

这些轨迹线由图4中的蓝色曲线和绿色直线表示,

其中蓝色线对应于c≠0,而绿色线则是c=0的特

殊情形.这些轨迹线均为不变流形,其中绿色直线

对应E1,蓝色曲线均和E1 相切于坐标原点.这些

不变流形均和E1 相关,其中E1 自身具有  ∞光滑

图4 二维线性系统的谱子空间和谱子流形[20]

Fig.4 Spectral
 

subspace
 

and
 

spectral
 

submanifolds
 

of
 

the
 

2-dimensional
 

linear
 

system
 [20]
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性,被定义为主慢谱子流形(primary
 

slow
 

SSM)[22];

蓝色曲线族均具有  􀎥β/α􀎡光滑性,其中􀎥β/α􀎡代表不

超过该数的最大整数,如α=2、β=3时,这些流形

仅具有  1 的 光 滑 性,被 定 义 为 次 慢 谱 子 流 形

(secondary
 

slow
 

SSM)[22].
  

从前述分析可以看到,当β/α为分数时,与E1

相切的慢谱子流形具有无穷多个,在这无穷多个当

中,主谱子流形最光滑( ∞),而剩下的次谱子流形

的光滑性均为􀎥β/α􀎡.当β/α为整数时,这无穷多个

慢谱子流形的光滑性均相同,不存在最光滑的谱子

流形.β/α为整数对应动力系统的特征值共振.因
此,当系统不存在共振时,最光滑的慢谱子流形存

在且唯一.最后需指出的是与快谱子空间E2 相切

的快谱子流形仅有一个,即E2 自身.
  

综上,谱子流形和谱子空间相互捆绑,在给定

谱子空间后才能谈论谱子流形.根据谱子空间对应

特征值的实部排序,可定义谱子空间的快慢特性,

进一步定义慢谱子流形和快谱子流形[21].其中慢

谱子流形具有吸引性,和模型降阶紧密相关.慢谱

子流形通常具有无穷多个,当线性系统特征值不存

在共振关系时,在这无穷多个慢谱子流形中有一个

流形的光滑性最好,被定义为主谱子流形[21,22].
  

以上分析可直接拓展到高维线性自治系统.基
于特征值分析给出系统的谱特性,在选定主子空间

后,根据主子空间内特征值和其余特征值是否存在

共 振 关 系 可 判 别 相 应 的 主 谱 子 流 形 是 否

存在[21,22].

2.2 非线性自治系统
  

当计入非线性F(x)后,在满足非内共振条件

下,线性自治系统的所有谱子流形均可拓展得到相

应的非线性谱子流形[20-22],如图5所示.需强调的

是,线性系统中最光滑的谱子流形E1 由直线拓展

为与E1 相切的曲线,因此自动表征了从坐标y 和

主坐标x 之间的耦合关系,故可利用W(E1)实现

精确降阶.这类拓展同样适用于任意有限维系统.
从图5可以看到,所有的慢谱子流形W(E1)

和W(E1;c)均与谱子空间E1(x 轴)相切于坐标

原点.在结构动力学中,慢谱子空间对应于衰减较

慢的低阶线性模态,慢谱子流形则对应由低阶线性

模态基于不变性拓展得到的非线性模态.线性模态

基于不 变 性 拓 展 得 到 的 非 线 性 模 态 亦 被 称 为

Shaw-Pierre不变流形[17].基于前述分析可知,非
线性模态通常具有无穷多个,其中存在一个最光滑

的非线性模态,即主谱子流形,它与非线性模型降

阶紧密相关[20-22].为简单起见,若不加特殊说明,后
续的谱子流形均指光滑性最好的主谱子流形.

图5 二维非线性系统的谱子空间和谱子流形.这里不同颜色

的谱子流形由图4中线性系统相应的谱子流形拓展得到[20]

Fig.5 Spectral
 

submanifolds
 

of
 

2-dimensional
 

system
 

with
 

smooth
 

nonlinearities
 

added
 

to
 

(4).
 

They
 

are
 

obtained
 

from
 

Fig.
 

4
 

with
 

added
 

nonlinearities[20]

2.3 非自治系统
  

非线性系统通常还受到外部激励和载荷作用,
此时(1)被修改为如下形式

x· =Ax+F(x)+Fext(t,x). (7)
自治 系 统 的 谱 子 流 形 以 平 衡 点 为 锚 点(anchor

 

point).当外激励为小振幅周期性激励时,即Fext=
􀆠G(Ωt,x),双曲型平衡点摄动为具有相同稳定性

的周期解[21,23],相应的自治谱子流形在满足非内

共振条件下摄动为周期性变化的谱子流形[21],如

W(E1)变成W(E1,Ωt).类似的,当外激励为小振

幅概周期激励时,自治系统的平衡点摄动为具有相

同稳定性的环面(概周期解)[21,23],相应的自治谱

子流形在满足非内共振条件下摄动为概周期变化

的谱子流形[21],如W(E1)变成W(E1,Ω1t,
 

Ω2t).
针对周期或概周期激励,降阶主子空间(主模态)的
选取需考虑激励频率和固有频率的共振关系,并在

此基础上计入固有频率之间的内共振关系.
  

针对更一般情形,当Fext(t,x)幅值较小或者

变化缓慢时,对应谱子流形的锚点由平衡点变成一

条可显式求解的稳态轨迹,而自治谱子流形则成为

时变的谱子流形[24].基于此可进一步建立随机振

动的谱子流形降阶理论[25],也为软体机器人的谱

子流形降阶控制奠定了理论基础.

2.4 约束动力系统
  

以上的谱子流形理论均基于显式微分方程.针
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对约束动力系统,控制方程常为微分-代数方程.
从流体动力学中的不可压缩流动[26]到复杂多体系

统动力学[27],约束动力系统广泛存在.谱子流形理

论已被拓展到约束动力系统,通过推导微分-代数

方程和转化的微分方程之间的等价关系,可建立约

束动力系统的谱子流形降阶理论[28].
  

从线性系统谱分析来看,约束动力系统具有约

束模态(即微分-代数方程框架下位移为零而拉式

乘子非零的模态)[28],其相应的特征值趋于无穷

大,与降阶的慢谱子空间无关,因此在选降阶主子

空间和判别共振关系时需移除这些模态[28].

2.5 非光滑动力系统
  

在上述谱子流形理论的讨论中,我们假定了控

制方程非线性项的光滑性.非光滑是复杂系统的一

类重要非线性特征.针对余维1的非光滑情形(即
非光滑事件由单个方程描述,如碰撞面等),已拓展

发展了相应的谱子流形理论[29],其基本思路如图6
所示.通过将非光滑系统在事件面两侧分解为两个

光滑系统,然后将相应的谱子流形进行组合拼接可

得到非光滑系统的整体谱子流形,基于该整体谱子

流形可构造低维降阶模型.

图6 非光滑系统的谱子流形[29]

Fig.6 Spectral
 

submanifolds
 

of
 

non-smooth
 

dynamical
 

system[29]

2.6 无穷维动力系统
  

无穷维动力系统的控制方程为非线性的偏微

分方程,其分析难度极大,故无穷维动力系统的谱

子流形理论研究相对较少,只针对特定形式的无穷

维动力系统建立了谱子流形理论.Kogelbauer和

Haller考虑了非线性地基上的瑞利简支梁,发现在

特定阻尼情形下可在巴拿赫空间中建立谱子流形

理论[30].Buza讨论了Navier-Stokes方程的谱子流

形理论,在无内共振条件下证明了具有  1 光滑性

的谱子流形的存在性[31].时滞系统也是一类无穷

维动力系统,其谱子流形理论尚未完善,但发展了

基于算子微分方程[32]和常微分方程近似[33]的谱子

流形降阶方法,并通过数值算例验证了降阶的有

效性.

3 谱子流形降阶方法
  

如上节所示,主慢谱子流形是光滑性最好的低

维吸引性流形,其数学上的存在性和唯一性条件清

晰,为发展低维精确可靠的降阶模型提供了坚实理

论基础.本节拟介绍基于谱子流形降阶的主要步

骤,并综述在方程驱动和数据驱动两个框架下的谱

子流形降阶方法.

3.1 谱子流形降阶方法的主要步骤
  

谱子流形降阶的主要步骤见图7,下面分别给

出具体介绍.
3.1.1 选择主子空间

模型降阶需选用慢谱子流形,因此首先需计算

线性系统的特征值,以便确定其对应谱子空间.将
特征值实部按从大到小排序,从中选择特征值实部

较大的慢谱子空间作为降阶的主子空间,剩余的特

征向量(模态)构成从子空间.判别主子空间和从子

空间的特征值是否存在共振关系,若存在,则需将

共振模态纳入主子空间.针对自由振动,通常来说

选取低阶模态作为主子空间即可.对于周期或概周

期激励的受迫振动情形,则需选取主共振模态作为

主子空间开展降阶.
3.1.2 计算谱子流形及降阶模型

在选定主子空间后,可利用其对应的谱子流形

实现低维精确降阶.如第1节所述,需确定降阶坐

标到原系统高维状态向量或观测量的映射W,即谱

子流形的参数化映射,并进一步推导谱子流形上的

内禀动力学,即降阶动力学向量场R.这两个核心

要素可在方程驱动或数据驱动框架下获得,在3.2
和3.3小节中将分别给出详细介绍.
3.1.3 基于降阶模型预测动力学响应

在获得谱子流形的参数化映射和降阶动力学

模型后,可利用降阶模型预测原复杂系统的非线性

动力学行为,包括自治系统的响应和非自治系统的

动态演化.以结构非线性振动为例,可提取骨架曲

线、频响曲线、分岔、概周期和混沌等复杂运动.还
可利用降阶模型开展动力学设计,如软体机器人的
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控制设计.第4节将详细介绍谱子流形降阶方法在

复杂非线性动力系统中的应用.

图7 谱子流形降阶流程图

Fig.7 Flowchart
 

for
 

model
 

reduction
 

via
 

SSMs

3.2 基于方程驱动的谱子流形降阶
  

在方程驱动的框架下,系统的控制方程已知,

故线性系统的谱可通过求解特征值问题得到.按照

3.1.1小节中给定的方法选择降阶主子空间.然后

利用不变性方程求解谱子流形的参数化映射和降

阶动力学模型.以非线性自治系统为例介绍计算流

程.由于谱子流形满足不变性,可将重构映射(3)和
降阶动力学(2)代入原系统的控制方程(1),得到如

下的偏微分方程

􀆟pW(p)·R(p)=AW(p)+F[W(p)].(8)

利用参数化方法[34-36]求解上述不变性方程.由
于流形和降阶动力学均光滑,对W 和R 进行泰勒

展开:

W(p)=∑
m
Wmpm,

  

R(p)=∑
m
Rmpm. (9)

其中Wm∈ℂn、Rm∈ℂm、m∈ℕm
0 为多重指标向

量,pm=p
m1
1 …p

mm
m ,|m|=m1+…+mm.接下来

需确定泰勒级数的展开系数.当F 为多项式函数

时,通过将式(9)代入偏微分方程(8)并根据多项式

pm 匹配可得到关于待定系数的线性代数方程组.
针对线性展开项(|m|=1),Wm 和主子空间对应的

特征向量相关,Rm 则和主子空间对应的特征值相

关,然后可递归求解得到高阶项的展开系数.由于

推导得到的线性代数方程组是欠定的方程组,用户

可自行选择流形的参数化方式,从而获得规范型形

式的降阶动力学.关于不同的参数化形式的选择和

讨论,可参考文献[36,37].
  

针对含周期或概周期外力Fext=􀆠G(Ωt,x)的
非自治系统,重构映射(3)可更新为

x=W(p)+􀆠W􀆠(p,Ωt), (10)

而降阶动力学更新为

p
·
=R(p)+􀆠R􀆠(p,Ωt), (11)

不变性方程(8)也需进行相应的更新.通过利用泰

勒-傅里叶级数对W􀆠(p,Ωt)和R􀆠(p,Ωt)进行展

开,并代入更新的不变性方程亦可通过递归求解得

到展开系数.具体求解过程可见文献[38,39].针对

更一般的非自治系统,根据不变性方程求解谱子流

形降阶模型的详细步骤可见文献[24].
  

方程(8)给出的降阶模型直接基于物理坐标,

这保留了非线性函数F 的特性,如有限元模型中

的稀疏特征.早期的谱子流形降阶计算限定在模态

坐标下,即x 为模态坐标向量而A 为由特征值构

成的对角矩阵[38,40-42].这类计算方法需计算模态转

换矩阵,且模态转换会破环F 的稀疏性,不适用于

高维的数值离散模型[43].为突破该局限,近年来发

展了直接基于物理坐标的谱子流形降阶计算方

法[39,43-45],该方法只需要计算主子空间对应的特征

向量,且保持了F 的稀疏性,可递归计算任意维谱

子流形的任意阶展开,实现了谱子流形降阶的自动

化生成.
 

针对机械系统,在假定比例阻尼矩阵、对称质

量矩阵、刚度矩阵、非线性F 是位移的二次和三次

函数后,Vizzaccaro等发展了计算不变流形的直接

参数化方法(direct
 

parameterization
 

of
 

invariant
 

manifolds,
 

DPIM)[46-48],也被成功用于高维有限元

问题的降阶.而前述文献[39,43-45]中发展的基于

物理坐标的谱子流形计算方法则适用于通用动力

系统,对质量矩阵、阻尼矩阵、刚度矩阵和非线性F
的特征不作限定,被成功用于悬臂输流管等含陀螺

力和循环力(阻尼和刚度矩阵非对称)系统的降

阶[49],也被用于基于黏弹性本构建模的含非线性

阻尼力的板壳结构非线性振动分析[45].
参数化方法也可用于计算以自治系统极限环

为降阶锚点的谱子流形及其降阶动力学[50,51].研

究表明直接代数计算相比基于弗洛凯标准型计算

效率更高,更适用于高维系统,通过转子与定子碰

摩系统等算例验证了方法的有效性.

3.3 基于数据驱动的谱子流形降阶
 

在数据驱动框架下,需从数据中提取谱子流形

及其降阶模型.首先对数据预处理,当观测量维度

较低时需借助时滞嵌入定理进行扩维[52].由于慢

谱子流形是具有吸引性的不变流形,数据采集通常

采用不同初始条件下自治系统在平衡点附近的轨

迹.基于这些数据获得自治系统的谱子流形降阶模

型,然后基于规范型理论来外推预测受迫振动

91



动 力 学 与 控 制 学 报 2025年第23卷

响应[53].
  

结合图7给出的流程图,首先需选定降阶主子

空间.根据自治系统瞬态轨迹的时间频率谱对信号

进行截断以确保训练用的轨迹靠近目标谱子流形,

并根据频率谱判别系统是否含有内共振关系,从而

确定主子空间的维数.早期的谱子流形数据驱动建

模同时拟合映射W 和向量场R,优化求解困难,鲁
棒性较差[54].Cenedese等人提出了一套新的拟合

框架[53]来突破这些难点,显著提升了数据驱动谱

子流形的应用前景.该新框架的核心思想是先拟合

映射W 再拟合向量场R,从而降低了优化求解的

难度.下面简要介绍该拟合框架.

图8 图形样式参数化流形

Fig.8 Graph-style
 

parameterization
 

of
 

manifold
  

该拟合框架采用图形样式对流形进行参数化

描述(m=1的特殊情形见图8),即通过将观测向

量投影到主子空间来定义降阶坐标

p=VTy, (12)
其中V 是主子空间的基向量.然后将映射W 分解

为子空间内的投影部分和垂直于子空间的部分,其
中垂直于子空间的部分用降阶坐标p 的非线性多

项式描述

y=Vp+M2∶qp2∶q, VTM2∶q =0. (13)

这里p2∶q 表示所有从2阶到q 阶的单项式构成的

列向量,如m=2,q=3时,有

p2∶3= [p21,p1,p2,p22,p31,p21,p2,p1,p22,p33]T,

(14)

M2∶q 则为这些非线性项的系数矩阵.由于谱子流

形为不变流形,可通过极小化轨迹到目标流形的距

离来拟合得到V 和M2∶q.然后根据式(12)得到降

阶坐标p 的轨迹,并利用多项式拟合来确定降阶

动力学(2).此时得到的动力学(2)不具有规范型形

式,可进一步通过极小化共轭误差来拟合规范型坐

标变换和规范型动力学.基于规范型理论,可直接

修正降阶动力学,从而外推预测系统的受迫振动.
这意味着基于自由振动数据训练的模型可以直接

用于预测受迫振动响应,具有较强的泛化能力.
  

以上框架中的流形拟合和规范型拟合均为非

凸优化问题,在处理含高维观测量的问题时求解难

度大.为突破该难点,Axås等人改进了该拟合框

架,发展了谱子流形数据驱动建模的快速算法[55],

下面对该快速算法做简要介绍.针对流形拟合难

点,该算法利用正交模态分解得到主子空间的基底

V,从而将流形拟合简化为标准的多项式拟合问

题,可直接利用伪逆进行求解.针对规范型拟合难

点,将拟合的降阶动力学(2)在方程驱动框架下进

行规范型变换.需指出的是,这种基于方程变换得

到的规范型模型相比通过优化拟合得到的规范型

模型具有较小的收敛区域.
  

针对动力系统的控制问题,将降阶动力学(2)

修改为如下形式

p
·
=R(p)+Bu, (15)

这里u 代表控制输入.在拟合完自治系统的降阶动

力学后,进一步拟合控制矩阵B 来得到含控制输

入的降阶模型[56],然后利用降阶模型(15)来开展

控制设计.这一框架已被成功用于软体机器人的实

时控制,将在第4节给出具体的介绍.

3.4 软件集成
 

针对基于方程和数据的谱子流形降阶方法,分
别发展了相应的模型降阶工具箱SSMTool[57]和

SSMLearn[53,58](软件徽标见图9),本节对两个工

具箱做简要介绍.

图9 谱子流形降阶工具箱

Fig.9 SSM
 

reduction
 

toolboxes

SSMTool是方程驱动框架下基于 MATLAB
的开源模型降阶工具箱,以控制方程为输入,以参

数化方法为核心算法,可在物理坐标下直接计算任

意维谱子流形降阶模型.该工具箱集成了一套开源

有限元程序 YetAnotherFEcode[59]和动力系统非

线性分析和优化设计平台COCO[60-62],利用降阶

模型对复杂系统的非线性动力学给出精细分析.该
工具 箱 在 近 期 还 发 展 了 和 商 用 有 限 元 软 件

COMSOL的接口,成功实现百万自由度复杂结构

的模型降阶[45].
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SSMLearn是数据驱动框架下的谱子流形降

阶工具箱,支持 MATLAB和Python的两个平台,

并融合了fastSSM 这一数据驱动降阶的快速算

法[55].SSMLearn以数据为输入,并提供数据预处

理模块来帮助用户选择主子空间的维数和对信号

进行预处理.在给定算法参数后,基于3.3节给出

的方 法 对 谱 子 流 形 及 其 动 力 学 进 行 拟 合.
SSMLearn还融合了COCO和SSMTool,以方便

利用降阶模型来开展复杂系统非线性动力学响应

的预测.

4 在复杂非线性动力系统中的应用
  

谱子流形模型降阶近年来在高维非线性振动、

流体动力学、软体机器人控制中获得成功应用,下
面分别给出具体介绍.

4.1 高维非线性振动
  

基于谱子流形降阶可显著缩减高维非线性振

动的自由度数.对于无内共振情形,高维非线性振

动可降阶到单个自由度(相空间为2维);对于含内

共振情形,降阶模型则通常是两个自由度(相空间

为4维),故可利用降阶模型实现高维非线性振动

的高效预测[43,44].考虑简谐激励下的受迫振动时,

还可对降阶模型实现动力学简化,即原系统的周期

解和概周期解被转化为降阶模型的平衡点和极限

环,从而大大降低了分岔分析的难度[63].
  

针对自由振动,谱子流形降阶建立在具有吸引

性的不变流形上,因此可利用降阶模型预测系统在

平衡点附近的瞬态响应[53,64].对于无内共振的情

形,谱子流形降阶模型为单自由度,可解析提取骨

架曲线[41,54],并解析预测颤振极限环[49].已成功提

取十三万自由度机翼非线性有限元模型[43]和百万

自由度 MEMS陀螺仪[45]的骨架曲线(见图10),并
成功预测了机翼和轮胎的颤振极限环[65].

针对受迫振动的稳态解,谱子流形降阶可在无

内共振时解析提取给定激励幅值下的受迫振动幅

频响应曲线[41](具体应用见图10)和以激励幅值和

频率为参数的响应曲面[66],并解析预测频响曲线

中的孤岛[42].针对含内共振系统,利用降阶系统平

衡点的参数延续可高效提取受迫振动响应,加速比

高达数万[44].利用降阶模型也可以实现对周期解

分岔进行快速预测,高效提取系统的概周期运动并

检验其稳定性和分岔[63,67],为高维非线性系统的

概周期运动分析提供了新思路.基于谱子流形降阶

模型也能对非线性振动中的混沌这类复杂运动进

行预测[67,68].

图10 百万自由度 MEMS陀螺仪骨架及幅频响应曲线
(SSM降阶到单个自由度,Forward

 

simulation为COMSOL
数值模拟).SSM三阶计算仅耗时两小时而单次COMSOL

数值模拟耗时近90小时[43]

Fig.10 Forced
 

response
 

and
 

backbone
 

curves
 

for
 

the
 

primary
 

resonance
 

of
 

the
 

first
 

vibration
 

mode
 

of
 

the
 

MEMS
 

gyroscope
 

with
 

more
 

than
 

1
 

million
 

DOFs.
 

Here,
 

the
 

computational
 

time
 

for
 

the
 

SSM
 

reduction
 

at
 

cubic
 

truncation
 

is
 

2
 

hours,
 

while
 

each
 

forward
 

simulation
 

via
 

COMSOL
 

took
 

nearly
 

90
 

hours[43]
 

针对参激振动,利用谱子流形降阶模型的平凡

周期解的分岔可判别稳定性区域,并进一步提取失

稳后产生的非平凡周期解的频响曲线.这已被成功

用于机械振子和梁等连续结构的参激振动分析,且
适用于外共振和参激共振共存的情形[39].

 

针对随机振动,在假定随机载荷一致有界的前

提下,可利用随机谱子流形构造低维降阶模型[25].
通过对降阶模型的蒙特卡洛模拟可高效提取原高

维系统随机响应的功率谱密度.Xu等利用梁和板

等有限元模型的随机振动论证了谱子流形在随机

振动分析中的计算效率和精度[25].

4.2 流体动力学
  

基于数据驱动的谱子流形模型降阶被成功用

于流体动力学预测,包括圆柱绕流中的涡街现

象[53],平面库埃特流动的平衡点共存及平衡点之

间的连接和迁移[69],管道流中的混沌吸引子和层

流吸引子的边界[70],Kuramoto-Sivashinsky方程

描述的混沌运动[68].从上述应用可以看到,基于谱

子流形的降阶可有效预测具有多稳态解共存的复

杂非线性动力学现象.
 

谱子流形降阶也被成功用于流固耦合动力学.
Li等人在方程和数据驱动框架下对输流管道的流

12
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致振动进行了分析[49,71,72],预测了悬臂输流管在颤

振前后的动力学行为,发现了悬臂管道概周期运动

的同宿轨道和不变环两类全局分岔[49],建立了以

流速为变量的参数化谱子流形降阶模型[71],发展

了针 对 简 支 输 流 管 道 屈 曲 后 动 力 学 的 降 阶

模型[72].
  

流固 耦 合 方 面 的 应 用 还 包 括 液 体 晃 动 力

学[53,55]和流水中倒立的柔性旗[73].这两个应用均

以实验数据为基础,在液体晃动力学的应用中成功

利用基于自由晃动获得的降阶模型预测了基础激

励下液体晃动的力学行为,包括液体自由表面的时

间历程[55];水中倒立柔性旗则成功捕捉了三个平

衡点(一个鞍点、两个不稳定焦点)和大范围极限环

运动共存的复杂动力学现象,并进一步对系统的混

沌运动进行了预测和分析[73](见图11).

图11 SSM预测流水中倒立柔性旗的混沌运动[73]

Fig.11 SSM
 

prediction
 

for
 

the
 

chaotic
 

dynamics
 

of
 

an
 

inverted
 

flag
 

from
 

experiments[73]

4.3 软体机器人控制
  

谱子流形降阶在控制设计中的应用研究刚起

步,包括振动控制[74]和轨迹跟踪[75-78],这里对其在

软体机器人控制中的应用做简要介绍.
  

Alora等人利用谱子流形降阶对连续型机器

人的轨迹控制开展了系列研究[56,75,76],分别采用仿

真和实验数据获得了降阶模型.针对含控制输入的

降阶模型(15),在模型预测控制框架下设计了机器

人的开环和闭环反馈控制律,通过复杂轨迹跟踪任

务验证 了 谱 子 流 形 降 阶 相 比 于 动 态 模 态 分 解

(DMDc)、Koopman算子和轨迹分段线性化等线性

模型降阶方法具有更好的精度和计算效率.
 

Yan等人将谱子流形降阶用于软体手术机械

臂的运动补偿,也发现了谱子流形降阶方法相比于

线性降阶方法的优势[77].谱子流形降阶控制设计

框架也被成功用于由张拉结构组成的连续型机械

臂[78],结果表明谱子流形降阶相比基于正交模态

分解(POD)模型降阶具有更高的精度和效率.

5 总结和展望
  

本文主要介绍了谱子流形降阶这一非线性模

型降阶方法.通过回顾相关文献,从谱子流形的理

论、模型降阶方法和在复杂非线性动力系统中的应

用等层面介绍了研究进展.谱子流形降阶方法创立

至今不足十年,逐渐呈现出突破高维非线性难点的

重要潜力,为分析自然和工程中的复杂非线性动力

学问题提供了新思路,但还有许多问题值得深入研

究和探讨,可在以下几个方面继续开展研究:
  

(1)非线性动力学反问题.动力学反问题包括

优化设计、模型更新[79]、不确定性量化和控制设计

等.这类问题的共同之处是需要在不同的参数(如
设计变量和控制输入)下进行多次模拟仿真,可充

分发挥模型降阶的优势.本文作者近期推导了谱子

流形降阶的显式灵敏度[80],为高维非线性动力系

统的反问题研究奠定了基础,并实现了融合流形降

阶和拓扑优化来调控骨架曲线的软硬特征[81].此

研究方向刚起步,在非线性动力学反问题方面有许

多工作需要进一步开展.
  

(2)非光滑非线性动力学.非光滑非线性是复杂

系统的一类重要非线性来源,现有的谱子流形降阶

聚焦光滑非线性问题,针对非光滑非线性系统的研

究很少[29,82].非光滑通常体现为局部或界面处的非

线性,通过融合局部非线性模型降阶方法和谱子流

形降阶有望发展适用于同时含局部非光滑非线性和

分布式几何非线性复杂问题的低维降阶模型.
(3)柔性多体动力学.谱子流形理论已拓展到

约束动力系统.柔性多体系统的控制方程通常为微

分-代数方程的形式,也是一类约束动力系统.谱
子流 形 降 阶 方 法 已 被 成 功 用 于 多 体 系 统 降

阶[28,83],但现有的研究结果主要还是聚焦系统在

平衡点附近的运动.针对柔性多体动力学的大范围

刚体运动和弹性振动强耦合、系统平衡点缺失等特

征,需研究谱子流形的全局延拓理论和全局谱子流

形的快速计算方法来服务柔性多体动力学降阶.
  

(4)多物理场耦合动力学.谱子流形降阶理论

的建立基于一般的动力系统,已被成功用于固体力

学和流体力学等领域,也有望被用于多物理场耦合

动力学,如力电耦合动力学[84]和流固声耦合动力

学等.多物理场耦合的控制方程在空间离散后通常

也是微分-代数方程形式,因此可在约束动力系统

22
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框架下建立降阶模型[28,84].现有的流固耦合谱子

流形降阶多为数据驱动,方程驱动框架下的流固耦

合问题谱子流形模型降阶还有待进一步发展.
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