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摘要 工业机器人机械臂末端精确跟踪焊接路径过程中,存在关节摩擦(干扰)和通信时滞.为解决这类问

题,研究一维不稳定热方程的性能输出跟踪问题,该模型含有外部未知干扰且输入端具有时滞现象.根据一

阶传输方程的性质,可以将控制系统建模为热方程与传输方程构成的级联系统,传输方程可以看作是热方

程系统的执行动态.系统中存在非同位结构,通过构造合适的辅助系统解决非同位结构带来的困难,通过执

行动态补偿方法解决级联系统的控制问题.构造基于误差的观测器以同时估计外部干扰和系统状态,并成

功设计全状态反馈律以实现系统的性能输出跟踪.最后证明设计的观测器具有适定性,构成的闭环系统具

有指数稳定性.
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Abstract In
 

the
 

process
 

of
 

accurately
 

tracking
 

the
 

welding
 

path
 

with
 

the
 

end
 

effector
 

of
 

an
 

industrial
 

ro-
bot

 

arm,
 

challenges
 

such
 

as
 

joint
 

friction
 

(disturbance)
 

and
 

communication
 

time
 

delay
 

arise.
 

To
 

address
 

these
 

issues,
 

this
 

study
 

investigates
 

the
 

performance
 

output
 

tracking
 

problem
 

for
 

a
 

one-dimensional
 

un-
stable

 

heat
 

equation,
 

with
 

unknown
 

external
 

disturbances
 

and
 

input
 

end
 

time
 

delay.
 

Based
 

on
 

the
 

properties
 

of
 

the
 

first-order
 

transport
 

equation,
 

the
 

control
 

system
 

can
 

be
 

modeled
 

as
 

a
 

cascaded
 

system
 

consisting
 

of
 

a
 

heat
 

equation
 

and
 

a
 

transport
 

equation,
 

where
 

the
 

transport
 

equation
 

represents
 

the
 

actua-
tor

 

dynamics.
 

The
 

system
 

features
 

a
 

non-collocated
 

structure,
 

where
 

the
 

difficulties
 

arising
 

from
 

this
 

structure
 

are
 

resolved
 

by
 

constructing
 

an
 

appropriate
 

auxiliary
 

system.
 

The
 

control
 

problem
 

of
 

the
 

casca-
ded

 

system
 

is
 

solved
 

via
 

the
 

actuator
 

dynamics
 

compensation
 

method.
 

An
 

error-based
 

observer
 

is
 

con-
structed

 

to
 

simultaneously
 

estimate
 

external
 

disturbances
 

and
 

system
 

states,
 

and
 

a
 

full-state
 

feedback
 

law
 

is
 

successfully
 

designed
 

to
 

achieve
 

the
 

performance
 

output
 

tracking
 

of
 

the
 

system.
 

It
 

is
 

proven
 

that
 

the
 

designed
 

observer
 

is
 

well-posed
 

and
 

the
 

closed-loop
 

system
 

achieves
 

exponential
 

stability.



动 力 学 与 控 制 学 报 2025年第23卷

Key
 

words input
 

delay, one-dimensional
 

heat
 

equation, disturbance, output
 

tracking

引言
  

在现代控制理论中,输出跟踪问题因其广泛的

应用背景而受到持续关注,例如航空航天领域无人

机的航迹跟踪问题[1-3]、机器人领域光伏阵列清洁

机器人路径跟踪问题[4]
 

、深海采矿领域采矿车路径

跟踪研究[5]等.近年来,许多专家对如何处理输出

跟踪问题进行了广泛的研究,输出跟踪方法还有效

解决了永磁同步电机(PMSM)的速度跟踪和抗干

扰问题[6]、多机器人系统(MRSs)分布式协同输出

调节中的碰撞/障碍物避让问题[7]等.在研究输出

跟踪问题时,最基本、最系统的方法就是内模原理.
内模原理是一种通过将鲁棒输出跟踪在很大程度

上简化为动态跟踪误差反馈控制来处理系统的方

法[8].自20世纪70年代以来,这种方法已经扩展

到处理各种系统[9,10].
在日常生产和工业实践中,时滞和外部干扰是

不可避免会出现的问题.当系统存在时滞和外部干

扰时,控制问题变得更加复杂,传统的控制策略往

往难以保证系统的稳定性和跟踪性能.时滞现象可

能由信号传输、传感器测量或执行机构响应等因素

引起,时滞的存在往往导致系统性能下降甚至失

稳,尤其是在分布式参数系统中,其影响更为显著.
通过边界控制稳定的系统可以在任意小的反馈时

间延迟下变得不稳定[11,12].因此,
 

在考虑控制问题

时,处理时滞对系统的影响是必要和关键的.此外,

外部干扰(如环境温度波动、测量噪声等)进一步加

剧了系统的不确定性,使得精确的输出跟踪面临巨

大挑战[13].
  

工业机器人机械臂末端轨迹跟踪问题可建模

为热方程的输出跟踪问题,机器人机械臂末端需精

确跟踪焊接路径,在整个操作过程中关节摩擦(干
扰)和通信时滞需补偿,传统的控制策略往往难以

保证系统的跟踪性能.针对这类问题,现有的研究

非常少.因此,研究带有时滞和外部干扰的热方程

的输出跟踪问题在理论和实际应用中均具有重要

意义.
  

本文研究一类带有时滞和外部干扰的不稳定

热方程的性能输出跟踪问题,旨在设计有效的控制

策略,使得系统输出能够指数跟踪给定的参考信

号,同时抑制干扰和时滞带来的不利影响.后续部

分的结构安排如下:第1节介绍问题描述与预备知

识;第2节详细阐述控制器的设计与稳定性分析;
第3节介绍观测器的设计与适定性分析;第4节总

结全文.

1 提出问题
  

本文研究一维不稳定热方程的输出跟踪问题,
系统输入端含有时滞,

 

具体问题描述如下:

wt(x,t)=wxx(x,t), 0<x<1,
 

t>0

wx(0,t)=-qw(0,t)+d1(t), t≥0

wx(1,t)=u(t-τ)+d2(t), t≥0

yp(t)=w(0,t), t≥0

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

 

(1)
其中q∈ ℝn,w 是热方程的状态,di(t)(i=1,2)
是由下面有限维外系统生成的外部干扰,

 

yp 是系

统的性能输出,
 

u是系统的控制输入,τ>0代表常

数时滞.
 

在系统(1)中当q>0,
 

不含控制和外部

干扰的系统(1)就会变成不稳定系统.
 

本文研究的

目标是:
 

对于任意给定的参考信号yref(t),
 

设计构

造反馈控制律u使得跟踪误差ye(t)满足以下条件
 

|ye(t)|=|yref(t)-yp(t)|→0,
 

t→ � (2)
设系统(1)中的参考信号yref和干扰d 由如下有限

维外系统生成:
     

v·(t)=Gv(t), t≥0
di(t)=Qiv(t),yref(t)=Fv(t), t≥0 

 

(3)

其中G∈ℂn×n、F∈ℂ1×n、Qi∈ℂ1×n(i=1,2)是
已知矩阵.

 

由于外系统(1)的初值v0  未知,
 

显

然干扰di 和参考信号yref 是未知的.类似于文献

[14],
 

在输出跟踪问题(1)和(3)中,
 

假设

[G,(Q1-qF)coshG
~
+FG

~
sinhG

~
-Q2] (4)

 

可观,其中G
~
2=G.

  

注记1 在研究输出调节问题时,
 

以上假设是自然

的,参看文献[14,15]
 

.
  

由于系统(1)中输入端含有时滞,为了处理这

一问题,根据文献[16]的研究,
 

可设

ϕ(x,t)=u(t-τx),x∈[0,1], t≥0 (5)
将外系统(3)、变换(5)代入系统(1),

 

结合(2)

可知系统(1)变为
 

88
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wt(x,t)=wxx(x,t), 0<x<1,t>0

wx(0,t)= -qw(0,t)+Q1v(t), t≥0

wx(1,t)=ϕ(1,t)+Q2v(t), t≥0

-τϕt(x,t)=ϕx(x,t), 0<x<1,t>0

ϕ(0,t)=u(t), t≥0

v·(t)=Gv(t),ye(t)=Fv(t)-w(0,t), t≥0

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁􀪁

  

(6)
系统(6)的状态空间为  =L2(0,1)×L2(0,

1)×ℂn ,下面的研究都将在状态空间  中展开.
根据变化

 

(5)可知,输入时滞可以动态的表示为传

输方程,
 

那么输入端含有时滞的热方程的控制问

题就转化为PDE-PDE级联系统的控制问题.首先

设计基于误差的观测器,
 

这个观测器能同时估计

系统状态和外部干扰,
 

然后设计全状态反馈实现

输出跟踪.全文假设如下条件成立:
假设1 矩阵G ∈ ℂn×n 满足

σ(G)⊂ {λ|Reλ=0} (7)
注记2 假设1的作用为,使得研究的问题(6)有
意义,

 

即当t→ �时,干扰Q1v(t)、Q2v(t)和参考

信号 yref(t)=Fv(t)存 在.并 且 使 所 有 干 扰

Q1v(t)、Q2v(t)和参考信号yref(t)都由谐波信号

的有限和产生[17]
 

.

2 状态反馈

2.1 控制器设计
  

本节的目标是针对问题(6),设计全状态反馈,
实现跟踪误差满足(2).在系统(6)中,Q1v(t)位于

x=0端,Q2v(t)和u(t)位于x=1端,显然干扰
 

Q1v(t)、Q2v(t)和控制u(t)不在同一控制通道

内,
 

为了解决这一问题,需要构造辅助系统.
 

构造

辅助系统的本质是构造一个与外源系统同构的内

部模型,其输出用于抵消干扰di(t)(i=1,2)对系

统边界的影响.基于上述分析,设辅助系统ρ1(x,

t)满足
                            

ρ1t(x,t)=ρ1xx(x,t),x ∈ (0,1), t>0

ρ1(0,t)=Fv(t), t≥0

ρ1x(0,t)=(Q1-qF)v(t), t≥0

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

(8)
受文献[18]的启发,

 

系统(8)存在级数形式的特解:
                      

ρ1(x,t)=∑
�

n=0
αn(t)

xn

n!
, x∈[0,1],t≥0

(9)

将特解(9)代入系统(8)可得系数αn(t)满足
                          

α·n(t)=αn+2(t),

α0(t)=Fv(t)

α1(t)=(Q1-qF)v(t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(10)

于是,

ρ1(x,t)=∑
�

n=0
Fv(n)(t)x

2n

n! +

  ∑
�

n=0

(Q1-qF)v(n)(t) x2n+1

(2n+1)!

 =F ∑
�

n=0

Gnx2n

(2n)!
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 v(t)+

  (Q1-qF)∑
�

n=0

Gnx2n+1

(2n+1)!
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 v(t)(11)
 

如果定义
                 

G(s)=∑
�

n=0

s2n
(2n+1)! =

sinhs
s
, s≠0

1, s=0

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (12)

那么ρ1(x,t)可以表示为
                       

ρ1(x,t)=Ψ1(x)v(t), x ∈ [0,1],
 

t≥0
(13)

其中

Ψ1(x)=F ∑
�

n=0

Gnx2n

(2n)!
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 +

  (Q1-qF)∑
�

n=0

Gnx2n+1

(2n+1)!
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁

 =Fcosh(xG
~)+(Q1-qF)x (xG

~) (14)

其中G
~2 =G,

 

矩阵cosh(xG
~)和  (xG

~)由文献
 

[19]
 

的Definition
 

1.2定义.根据(6),
 

设辅助系统

ρ(x,t)满足

ρt(x,t)=ρx(x,t)

ρ(0,t)=[Ψ'1(1)-Q2]eτGv(t) (15)

类似于(11)的表示,ρ(x,t)可以表示为

ρ(x,t)=Φ(x)v(t), x∈[0,1],t≥0 (16)
其中

Φ(x)= [Ψ'1(1)-Q2]eτGe-τGx (17)
根据式(8)、(13)、(15)和(16)可得(Ψ1,Φ)满足

 

Ψ″1(x)=Ψ1(x)G

Ψ1(0)=F,
 

Ψ'1(0)=Q1-qF

Φ'(x)=-τΦ(x)G

Φ(0)=[Ψ'1(1)-Q2]eτG

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(18)

和Φ(1)=Ψ'1(1)-Q2.构造如下变换:

w1(x,t)=w(x,t)-Ψ1(x)v(t)

ϕ1(x,t)=ϕ(x,t)-Φ(x)v(t) (19)
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其中(Ψ1,Φ)由系统(18)定义.变化(19)可以消除干扰

对控制器设计的影响.根据式(6)、(18)和(19)可得

 

w1t(x,t)=w1xx(x,t)

w1x(0,t)=-qw1(0,t),w1x(1,t)=ϕ1(1,t)

-τϕ1t(x,t)=ϕ1x(x,t)

ϕ1(0,t)=u(t)-[Ψ'1(1)-Q2]eτGv(t)

ye(t)=-w1(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(20)
 

在系统(20)中,ϕ1-子系统的x=0端变为

u(t)-[Ψ'1(1)-Q2]eτGv(t)

跟踪误差ye(t)变为-w1(0,t).经过这一系列变

化,
 

问题得到了转化,
 

输出跟踪问题(6)转变成镇

定问题(20).根据估计/消除策略,
 

为了镇定系统
 

(20),
 

设计控制器如下
    

u(t)=[Ψ'1(1)-Q2]eτGv(t)+u1(t) (21)

其中 [Ψ'1(1)-Q2]eτGv(t)用来补偿外部干扰,

u1(t)是接下来需要设计的控制器.结合(21)和
(20)可知u1(t)是新系统

 

w1t(x,t)=w1xx(x,t)

w1x(0,t)=-qw1(0,t),w1x(1,t)=ϕ1(1,t)

-τϕ1t(x,t)=ϕ1x(x,t)

ϕ1(0,t)=u1(t)

ye(t)=-w1(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(22)
 

的控制器.下面将在新的状态空间
 

 0=L2(0,1)×L2(0,1)
 

中讨论控制器u1(t)的设计.
 

观察在系统(22)中,
 

控制器u1(t)作用在ϕ1-子系统的x=0端,
 

没有直

接作用在w1-子系统.
 

因此,
 

控制器u1(t)设计的

难点就是需要通过补偿由ϕ1-子系统生成的执行动

态来镇定系统(22).为此,引入backstepping坐标

变换,利用其空间尺度变换关系以及它的可逆性,

将复杂的级联系统(22)解耦为一个较简单的目标

系统.并且为了数学上的严谨性,
 

将使用算子形式

完成控制器的设计过程.基于上述分析,
 

引入如下

变换

P
f
g  =

f-∫
·

0
k(·,y)f(y)dy

g-∫
·

1
p(·-y)g(y)dy-∫

1

0
γ(·,y)f(y)dy  , 

∀(f,g)∈ 0 (23)
 

其中核函数k、γ 和p 分别由如下系统生成

kxx(x,y)-kyy(x,y)=c1k(x,y), 0<y≤x<1

k(x,x)=
c1
2
(1-x), 0<x <1

ky(x,0)=-qk(x,0), 0<x <1

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(24)

γx(x,y)+τγyy(x,y)=0,
 

(x,y)∈[0,1]×(0,1)

γy(x,0)= -qγ(x,0),
 

γy(x,1)=0,
 

0<x<1

γ(1,y)=kx(1,y),
 

0<y<1

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

(25)

和
    

p(s)=-τγ(1+s,1), s∈ [-1,0]
 

(26)

其中系统(24)是适定的[19],系统(25)可以通过分

离变量法求解.通过计算可知,
 

算子P∈ ( 0)可

逆,
 

其逆为

P-1 f
g  =

f+∫
·

0
l(·,y)f(y)dy

g+∫
·

1
q(·-y)g(y)dy+∫

1

0
ϑ(·,y)f(y)dy  ,

∀(f,g)∈  0 (27)

其中核函数l、ϑ和q分别由以下系统生成
 

lyy(x,y)-lxx(x,y)=c1l(x,y), 0<y≤x<1

l(x,x)=
c1
2
(1-x), 0<x <1

ly(x,0)=c2l(x,0), 0<x <1

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(28)
  

ϑx(x,y)+τϑyy(x,y)=c1τϑ(x,y),
 

(x,y)∈[0,1]×(0,1)

ϑy(x,0)=c2ϑ(x,0),ϑy(x,1)=0,
 

0<x <1

ϑ(1,y)=lx(1,y),
 

0<y<1

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

(29)

和
  

q(s)=-τϑ(1+s,1) (30)

令

[ε(·,t),z(·,t)]T=P[w1(·,t),ϕ1(·,t)]T

(31)

根据变换(31),
 

系统(22)变为

εt(x,t)=εxx(x,t)-c1ε(x,t)

εx(0,t)=c2ε(0,t),εx(1,t)=z(1,t)

-τzt(x,t)=zx(x,t)

z(0,t)=u1(t)-τ∫
1

0
γ(1-y,1)ϕ1(y,t)dy-

 ∫
1

0
γ(0,y)w1(y,t)dy

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁􀪁

(32)

09
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根据目标系统

εt(x,t)=εxx(x,t)-c1ε(x,t)

εx(0,t)=c2ε(0,t),
 

εx(1,t)=z(1,t)

-τzt(x,t)=zx(x,t)

z(0,t)=0

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(33)
    

其中c1≥c-22,c2=max0,
c1
2+q  , 

控制器u1设计为

u1(t)=τ∫
1

0
γ(1-y,1)ϕ1(y,t)dy+

 ∫
1

0
γ(0,y)w1(y,t)dy

 

(34)

根据式(21)和(34),
 

控制器u(t)设计为

u(t)= Ψ'1(1)-Q2  eτGv(t)+

 τ∫
1

0
γ(1-y,1)ϕ1(y,t)dy+

 ∫
1

0
γ(0,y)w1(y,t)dy (35)

 

根据式(35),
 

系统(20)的闭环系统为

w1t(x,t)=w1xx(x,t)

w1x(0,t)=-qw1(0,t)

w1x(1,t)=ϕ1(1,t)

-τϕ1t(x,t)=ϕ1x(x,t)

ϕ1(0,t)=τ∫
1

0
γ(1-y,1)ϕ1(y,t)dy+

 ∫
1

0
γ(0,y)w1(y,t)dy

ye(t)=-w1(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(36)

其中γ由式(25)定义.

2.2 主要结果证明

引理1 设τ>0,γ由式(25)定义,
 

那么对任意的

初始状态[w1(·,0),ϕ1(·,0)]∈  0,
 

闭环系统

(36)存在唯一解(w1,ϕ1)∈C([0,�); 0)使得
 

e
ω1t‖[w1(·,t),ϕ1(·,t)]‖ 0 →0, t→ �

(37)
   

其中ω1>0.进一步,存在正常数ω2>0使得调节

误差ye(t)满足

e
ω2t|ye(t)|→0, t→ � (38)

 

证明: 定义算子A:D(A)⊂  0 →  0

 

A(f,g)=(f″,-
1
τg'),∀(f,g)∈D(A)

D(A)={(f,g)∈H2(0,1)×H1(0,1)|
f'(0)=-qf(0),

 

f'(1)=g(1)

g(0)=∫
1

0
γ(0,·)fdy+τ∫

1

0
γ(1-·,1)gdy}

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(39)

根据定义(39),闭环系统(36)可以写成抽象形式

X
·
(t)=AX(t),X(t)=[w1(·,t),ϕ1(·,t)]T.

 

(40)

定义算子A1:D(A1)⊂  0 →  0  

A1(f,g)=(f″-c1f,-
1
τg')

∀(f,g)∈D(A1)

D(A1)={(f,g)∈H2(0,1)×H1(0,1)|

f'(0)=c2f(0),f'(1)=g(1),g(0)=0}

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁􀪁

(41)
 

根据定义(41),
 

系统(36)可以写为抽象形式

 X
·

1(t)=A1X1(t),
 

X1(t)=[ε(·,t),z(·,t)]T

(42)
           

由于系统(33)是由两个指数稳定的系统构成

的级联系统,
 

那么由系统(41)定义的算子 A1 在

H0 上生成指数稳定的C0-半群[20].根据变换P 的

定义(23),原闭环系统算子A 与目标系统算子A1

之间存在相似关系
 

PAP-1=A1 和PD(A)=D(A1) (43)
 

由于(43)以及算子 A1 在  0 上生成指数稳定的

C0-半群,
 

根据相似变换的性质,
 

算子A 同样生成

一个指数稳定的C0-半群.基于以上分析可知定理

的结论(37)成立.另外,
 

通过式(23)和式(31)可得

 ε(x,t)=w1(x,t)-∫
x

0
k(x,y)w1(y,t)dy

 

(44)

 

其中x ∈ [0,1].显然有
 

-ε(0,t)=-w1(0,t)=ye(t) (45)

因此,
 

收敛性(38)成立当且仅当

e
ω2t|ε(0,t)|→0, t→ � (46)

 

其中ω2>0是正常数.
 

观察系统(33)的z-子系统

是一阶传输方程,
 

那么当t>τ时,
 

系统(33)中的

u-子系统变成带有齐次边界条件的热方程如下:

εt(x,t)=εxx(x,t)-c1ε(x,t)

εx(0,t)=c2ε(0,t),
 

εx(1,t)=0 (47)

由文献[19]可知系统(47)是指数稳定系统,
 

那么

根据文献[21],
 

存在不依赖于t的正常数ω2 >0
使得

 

e
ω2t|ε(0,t)|→0, t→ � (48)

  

根据可逆变化(19)和(35),
 

原始系统(6)的控

制器设计如下

u(t)= Ψ'1(1)-Q2  eτGv(t)+

19
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 τ∫
1

0
γ(1-y,1)[ϕ(y,t)-Φ(y)v(t)]dy+

 ∫
1

0
γ(0,y)[w(y,t)-Ψ1(y)v(t)]dy (49)

根据控制器(49)可以得到系统(6)的闭环系统

 

v·(t)=Gv(t)

wt(x,t)=wxx(x,t)

wx(0,t)=-qw(0,t)+Q1v(t)

wx(1,t)=ϕ(1,t)+Q2v(t)

-τϕt(x,t)=ϕx(x,t)

ϕ(0,t)= Ψ'1(1)-Q2  eτGv(t)+

 τ∫
1

0
γ(1-y,1)[ϕ(y,t)-Φ(y)v(t)]dy+

 ∫
1

0
γ(0,y)[w(y,t)-Ψ1(y)v(t)]dy

ye(t)=Fv(t)-w(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(50)
其中 (Ψ1,Φ)和γ 分别由式(18)和式(25)定义.
定理1 设τ >0,Qi ∈ ℂ1×n(i=1,2),F ∈
ℂ1×n(Ψ1,Φ)和γ分别由式(18)和式(25)定义,那
么对于任意初始状态[w(·,0),ϕ(·,0),v(0)]∈
 ,

 

闭环系统(50)存在唯一解(w,ϕ,v)∈C([0,�
); )使得调节误差

 

ye(t)=Fv(t)-w(0,t)满足
 

e
ω2t|ye(t)|→0, t→ � (51)

其 中 ω2 > 0 是 正 常 数.
 

另 外, 如 果

sup
t∈[0,�)

‖v(t)‖ℂn <+�,
 

那么系统(50)的状态是

一致有界的,
 

即

sup
t∈[0,�)

‖[w(·,t),ϕ(·,t),v(t)]‖ <+�.

(52)
证明: 系统(50)中v-子系统是 ODE系统,

 

且与

w-ϕ-子系统是相互独立的,
 

由常微分方程理论可

知v-子系统存在唯一解.由引理1,
 

对任意的初始

状态 [w1(·,0),ϕ1(·,0)]∈C([0,�); 0),系统

(36)存在唯一的指数稳定解
 

(w1,ϕ1)∈C([0,�); 0)
满足式(37).根据可逆变化(19),

 

如果定义

w(x,t)=w1(x,t)+Ψ1(x)v(t)

ϕ(x,t)=ϕ1(x,t)+Φ(x)v(t) (53)
 

那么对于任意初始状态[w(·,0),ϕ(·,0),v(0)]∈ ,
(w,ϕ,v)是系统(50)的唯一解.简单计算可得

|ye(t)|=|Fv(t)-w(0,t)|=|w1(0,t)|
(54)

结合式(38)可知式(51)成立.最后,通过式(53)和

假设 sup
t∈[0,�)

‖v(t)‖ℂn <+�可知一致有界性(52)

成立.

3 观测器

3.1 基于误差的观测器设计
  

观察系统(6),为了方便设计系统的观测器,首
先干扰和测量误差需要分离.为了分离干扰和测量

误差,就要使干扰同时出现在方程和输出中,构造

辅助系统如下

ρ2t(x,t)=ρ2xx(x,t)

ρ2x(0,t)=T1v(t),ρ2(0,t)=T2v(t) (55)
 

其中T1、T2 是n 维调节向量.根据分离变量法,
 

可设

ρ2(x,t)=Ψ2(x)v(t) (56)

其中Ψ2(·):[0,1]→ℂn 是向量值函数.将式(56)

代入系统(55)可知
    

Ψ″2(x)=Ψ2(x)G

Ψ'2(0)=T1,Ψ2(0)=T2 (57)
 

Ψ2 可以解析地表示为

Ψ2(x)=T1x (xG
~)+T2cosh(xG

~),
 

(58)
 

其中
 

 (s)=
sinhs
s
, s≠0,s∈ ℂ,

1, s=0

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (59)

 

为便于设计观测器,
 

定义如下变换
  

w2(x,t)=w(x,t)-Ψ2(x)v(t) (60)
其中Ψ2(·)由式(57)定义.如果假设 Ψ'2(1)=

Q2,根据式(57)和式(60),
 

系统(6)变为

w2t(x,t)=w2xx(x,t)

w2x(0,t)= -qw2(0,t)+[Q1-qΨ2(0)-Ψ'2(0)]v(t)

w2x(1,t)=ϕ(1,t)

-τϕt(x,t)=ϕx(x,t)

ϕ(0,t)=u(t),

v·(t)=Gv(t),ye(t)=F1v(t)-w2(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁􀪁

(61)
其中F1=F-T2,T1∈ℂ1×n、T2∈ℂn×1是调节向

量.系统(61)和(6)的区别在于,在变化后的系统

(61)中,位于w2-子系统x=0端的第二项

[Q1-qΨ2(0)-Ψ'2(0)]v(t)
是可调节的.在假设(4)的条件下,

 

将系统(61)的
观测器设计为

29
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w^2t(x,t)=w^2xx(x,t)

w^2x(0,t)=β[ye(t)+w^2(0,t)]-qw^2(0,t)

w^2x(1,t)=ϕ(1,t)

-τϕt(x,t)=ϕx(x,t)

ϕ(0,t)=u(t)

v̂·(t)=Gv^(t)+L[ye(t)-F1v^(t)+w^2(0,t)]

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁􀪁

(62)
其中β>q是调节参数,L∈ℂn×1使得G-LF1是

Hurwitz阵.令

w~2(x,t)=w2(x,t)-w^2(x,t)

v~(t)=v(t)-v^(t) (63)

那么观测误差系统为

w~2t(x,t)=w~2xx(x,t)

w~2x(0,t)=(β-q)w~2(0,t),w~2x(1,t)=0

v~
·(t)=(G-LF1)v~(t)+Lw~2(0,t)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(64)
 

此外满足

Q1-qT2-T1-βF1=0 (65)

系统(64)的状态空间是  1=L2(0,1)×ℂn.根据

Ψ'2(1)=Q2 和(65)可得

T1=[(β-q)coshG
~
+G

~
sinhG

~][f(G)]-1

T2=[Q2+(βF-Q1)coshG
~][f(G)]-1

f(G)=(β-q)coshG
~
+G

~
sinhG

~,G
~2=G

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁

(66)
          

3.2 主要结果证明

引理2 设q∈ℝ,β>q是调节参数,f∈ℂ→ℂ
是连续函数,

 

那么矩阵函数

f(G)=(β-q)coshG
~
+G

~
sinhG

~,G
~2=G

(67)

可逆.
证明: 设

f(λ1)=(β-q)coshλ
~
1+λ

~
1sinhλ

~
1 (68)

 

其中λ
~2
1=λ1,∀λ1 ∈ ℂ.考虑算子

A2f=f″,∀f∈D(A2),

D(A2)={f∈H2(0,1)|

f'(0)=(β-q)f(0),f'(1)=0}

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (69)

令

A2f=λ1f,∀λ1 ∈σ(A2) (70)

根据定义(69)可得

f″=λ1f,

f'(0)=(β-q)f(0),f'(1)=0 (71)
 

由常微分方程理论可得

f(x)=a1e
λ~1x +a2e

-λ~1x,λ
~2
1=λ1 (72)

其中a1,a2∈Z .将式(72)代入式(71)的边界条件

可得

(λ
~
1-β+q)a1-(λ

~
1+β-q)a2=0

e
λ~1a1-e

-λ~1a2=0 (73)
 

式(73)有非零解当且仅当特征行列式det[Δ(λ1)]=
0,其中

Δ(λ1)=
λ
~
1-β+q -(λ

~
1+β-q)

e
λ~1 -e

-λ~1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ,λ

~2
1=λ1

(74)

简单计算特征方程为

det[Δ(λ1)]=λ
~
1sinhλ

~
1+(β-q)coshλ

~
1=0
(75)

其中,λ
~2
1 =λ

~
1,∀λ1 ∈σ(A2).因此,矩阵函数

f G  可逆.
 

引理3 设q∈ℝn,β>q,Q1∈ℂ1×n,T1∈ℂ1×n

和
 

F1 ∈ ℂ1×n 满足式(65),
 

那么对任意初始状态

[w~2(·,0),v~(0)]∈  1

误差系统(64)存在唯一解 (w~2,v~)∈C([0,�);
 1).另外,

 

e
ω3t‖[w~2(·,t),v~(t)]‖ 1 →0, t→ � (76)

其中ω3 是不依赖于t的正常数.
证明: 根据引理2和文献[22]可知,存在向量

L∈ ℂn×1 使得G-LF1 是Hurwitz
 

阵.定义算子

A3:D(A3)⊂  1 →  1 为

A3(f,g)=[f″,(G-LF1)g+Lf(0)]

∀(f,g)∈D(A3),

D(A3)={(f,g)∈H2(0,1)×ℂn|

f'(0)=(β-q)f(0),f'(1)=0}

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

 

(77)

根据算子A3 的定义(77),
 

系统(64)可以写成抽象

形式
 

 X
·

2(t)=A3X2(t),X2(t)=[w~2(·,t),v~(t)]T

(78)

由于系统(64)是由指数稳定系统和有限维系统构

成的级联系统,
 

那么算子A3 在  上生成指数稳
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定的C0-半群.
引理4 设τ∈ ℝ+,q∈ ℝn,β>q,Q1 ∈ ℂ1×n,

T1 ∈ ℂ1×n 和F1∈ℂ1×n 满足条件(65),
 

对于任意

初始状态[w2(·,0),ϕ(·,0),v(0),w
^
2(·,0),ϕ(·,

0),v^(0)]∈  × 和控制u∈L2
loc(0,�),

 

系统

(61)和 系 统(62)存 在 唯 一 解 (w2,ϕ,v,w
^
2,ϕ,

v^)∈C([0,�); × ).另外,
 

e
ω3t‖(w2(·,t)-w^2(·,t),v(t)-v^(t))‖ 1 →0

(79)
 

其中ω3 ∈ ℝ+,t→ �.
证明: 根据引理3可知,

 

对初始状态

[w~2(·,0),v~(0)]

 =[w2(·,0)-w^2(·,0),v(0)-v^(0)] (80)

误差系统(64)存在唯一解 (w~2,v~)∈C([0,�);
 1)使得

e
ω3t‖[w~2(·,t),v~(t)]‖ 1 →0,t→ � (81)

其中ω3 是不依赖于t的正常数.
 

对任意初始状态
 

ϕ0=ϕ(·,0),
 

求解系统(61)的ϕ-子系统可得

ϕ(x,t)=
ϕ0(x-

t
τ
), τx ≥t

u(t-τx), τx <t

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (82)

那么对任意 [w2(·,0),ϕ(·,0),v(0)]∈  和控制

u∈L2
loc(0,�),系统(61)存在唯一

(w2,ϕ,v)∈C([0,�); )
根据可逆变化(63),

 

定义

w^2(x,t)=w2(x,t)-w~2(x,t)

v^(t)=v(t)-v~(t) (83)

结合式(82)和式(83),
 

对任意 [w2(·,0),ϕ(·,0),

v(0),w^2(·,0),ϕ(·,0),v
^(0)]∈  ×  ,系 统

(61)和系统(62)存在唯一解

(w2,ϕ,v,w
^
2,ϕ,v

^)∈C([0,�); × )

根据(81)可得,
 

存在不依赖于t的正常数ω3 使得

 e
ω3t‖(w2(·,t)-w^2(·,t),v(t)-v^(t))‖ 1 →0

(84)

其中t→ �.
  

通过上述分析,
 

根据引理4可得w^2(·,t)和

v^(t)分别由w2(·,t)和v(t)估计.根据可逆变换
 

(60)和引理4,
 

设计系统(6)的观测器如下

w^t(x,t)=w^xx(x,t)+Ψ2(x)L[ye(t)-

 Fv^(t)+w^(0,t)],

w^x(0,t)=β[ye(t)+w^(0,t)-T2v^(t)]-

 qw^(0,t)+(qT2+T1)v^(t),

w^x(1,t)=ϕ(1,t)+Ψ'2(1)v^(t),

-τϕt(x,t)=ϕx(x,t),

ϕ(0,t)=u(t),

v̂·(t)=Gv^(t)+L[ye(t)-F1v^(t)+w^2(0,t)]

ye(t)=Fv(t)-w(0,t) (85)
其中Ψ2(·)由(57)定义,β>q 是调节参数,L ∈
ℂn×1 使得G-LF1 是

 

Hurwitz
 

阵.
定理2 设τ∈ℝ+,q∈ℝn,β>q,G∈ℂn×n,满
足式(7),

 

Qi ∈ ℂ1×n(i=1,2),F ∈ ℂ1×n,L ∈
ℂ1×n,向量值函数Ψ2(·)由

 

(57)
 

定义,T1∈ℂ1×n

和T2 ∈ ℂ1×n 由(66)定义,
 

条件(4)成立,
 

那么对

任意初始状态

[w(·,0),ϕ(·,0),v(0),w
^(·,0),ϕ(·,0),

v^(0)]∈  × (86)
和控制u∈L2

loc(0,�),系统(6)的观测器(85)存在

唯一解

(w,ϕ,v,w
^,ϕ,v

^)∈C{[0,�); × }
 

(87)
另外

e
ω4t‖(w(·,t)-w^(·,t),v(t)-v^(t))‖ 1 →0

(88)
 

其中,t→ �,ω4 ∈ ℝ+ .
证明: 通过引理4得出w2(·,t)和v(t)的估计

分别为
 

w^2(·,t)和v^(t).结合式(60)可得
           

w(x,t)=w2(x,t)+Ψ2(x)v(t)

因此w^(·,t)是w(·,t)的估计.
  

对任意初始状态 [w(·,0),ϕ(·,0),v(0)]∈
 和控制

 

u∈L2
loc(0,�),控制系统(6)存在唯一解

(w,ϕ,v)∈C{[0,�); }
由引理4可知,

 

系统(61)和系统(62)是适定的.结
合式(60)可知式(87)成立.根据系统(6)和引理4
中式(84)可知式(88)成立.

4 结论
   

本文的主要贡献包括:(1)针对不稳定热方程,
提出了一种新的时滞补偿机制,有效降低了时滞对

闭环系统稳定性的影响;(2)设计了具有干扰抑制

能力的反馈控制器,确保系统在外部干扰下的跟踪

性能;(3)通过严格的数学分析,验证了所提方法的

优越性.研究成果不仅丰富了分布式参数系统的控

制理论,也为解决工业机器人机械臂末端精
 

确跟

踪焊接路径问题提供了新的思路.

49



第10期 王丽等:带有时滞和外部干扰的不稳定热方程的性能输出跟踪

参考文献

[1] ZHENG
 

Z,
 

CAI
 

S
 

C.
 

A
 

collaborative
 

target
 

tracking
 

algorithm
 

for
 

multiple
 

UAVs
 

with
 

inferior
 

tracking
 

capabilities
 

[J].
 

Frontiers
 

of
 

Information
 

Technolo-

gy
 

&
 

Electronic
 

Engineering,
 

2021,
 

22(10):
 

1334-1350.
 

[2] 安宁波,
 

王琦少,
 

赵小川,
 

等.
 

无人机集群的微分

平坦性与编队控制研究[J].
 

动力学与控制学报,
 

2023,
 

21(12):
 

79-88.

AN
 

N
 

B,
 

WANG
 

Q
 

S,
 

ZHAO
 

X
 

C,
 

et
 

al.
 

Differen-

tial
 

flatness
 

and
 

formation
 

control
 

of
 

unmanned
 

aerial
 

vehicle
 

swarm
 

[J].
 

Journal
 

of
 

Dynamics
 

and
 

Control,
 

2023,
 

21(12):
 

79-88.
 

(in
 

Chinese)
 

[3] QI
 

W
 

W,
 

TONG
 

M
 

B,
 

LI
 

X
 

B,
 

et
 

al.
 

Linear
 

dis-

turbance
 

observer-enhanced
 

continuous-time
 

predic-

tive
 

control
 

for
 

straight-line
 

path-following
 

control
 

of
 

small
 

unmanned
 

aerial
 

vehicles
 

[J].
 

Aerospace,
 

2024,
 

11(11):
 

902.
 

[4] 芮宏斌,
 

曹伟,
 

朱玲仪,
 

等.
 

光伏阵列清洁机器人

路径跟踪改进型自抗扰控制[J].
 

动力学与控制学

报,
 

2023,
 

21(9):
 

50-58.

RUI
 

H
 

B,
 

CAO
 

W,
 

ZHU
 

L
 

Y,
 

et
 

al.
 

Path
 

tracking
 

improved
 

active
 

disturbance
 

rejection
 

control
 

for
 

photovoltaic
 

array
 

cleaning
 

robot
 

[J].
 

Journal
 

of
 

Dy-

namics
 

and
 

Control,
 

2023,
 

21(9):
 

50-58.
 

(in
 

Chi-

nese)
 

[5] 陈昱衡,
 

张海成,
 

邹伟生,
 

等.
 

ROV型深海采矿车

动力学建模及路径跟踪控制研究[J].
 

动力学与控

制学报,
 

2025,
 

23(2):
 

30-37.

CHEN
 

Y
 

H,
 

ZHANG
 

H
 

C,
 

ZOU
 

W
 

S,
 

et
 

al.
 

Dy-

namic
 

modeling
 

and
 

path
 

tracking
 

control
 

of
 

a
 

ROV-

based
 

deep-sea
 

mining
 

vehicle
 

[J].
 

Journal
 

of
 

Dy-

namics
 

and
 

Control,
 

2025,
 

23(2):
 

30-37.
 

(in
 

Chi-

nese)
 

[6] HUO
 

Z
 

C,
 

PING
 

Z
 

W,
 

JIA
 

Y
 

J,
 

et
 

al.
 

Disturbance
 

rejection
 

of
 

PMSM
 

speed
 

servo
 

system:
 

an
 

adaptive
 

observer
 

approach
 

[J].
 

Control
 

Theory
 

and
 

Tech-

nology,
 

2025:
 

00261-x.
 

[7] ZHAO
 

C,
 

AN
 

L
 

W.
 

Collision/obstacle
 

avoidance
 

distributed
 

cooperative
 

output
 

regulation
 

of
 

multi-ro-

bot
 

systems
 

[J].
 

Automatica,
 

2025,
 

179:
 

112405.
 

[8] PAUNONEN
 

L.
 

Controller
 

design
 

for
 

robust
 

output
 

regulation
 

of
 

regular
 

linear
 

systems
 

[J].
 

IEEE
 

Transactions
 

on
 

Automatic
 

Control,
 

2016,
 

61(10):
 

2974-2986.
 

[9] DAVISON
 

E.
 

The
 

robust
 

control
 

of
 

a
 

servomecha-

nism
 

problem
 

for
 

linear
 

time-invariant
 

multivariable
 

systems
 

[J].
 

IEEE
 

Transactions
 

on
 

Automatic
 

Con-

trol,
 

1976,
 

21(1):
 

25-34.
 

[10] FRANCIS
 

B
 

A,
 

WONHAM
 

W
 

M.
 

The
 

internal
 

model
 

principle
 

of
 

control
 

theory
 

[J].
 

Automatica,
 

1976,
 

12(5):
 

457-465.
 

[11] DATKO
 

R.
 

Two
 

examples
 

of
 

ill-posedness
 

with
 

re-

spect
 

to
 

small
 

time
 

delays
 

in
 

stabilized
 

elastic
 

sys-

tems
 

[J].
 

IEEE
 

Transactions
 

on
 

Automatic
 

Con-

trol,
 

1993,
 

38(1):
 

163-166.
 

[12] DATKO
 

R.
 

Two
 

examples
 

of
 

ill-posedness
 

with
 

re-

spect
 

to
 

time
 

delays
 

revisited
 

[J].
 

IEEE
 

Transac-

tions
 

on
 

Automatic
 

Control,
 

1997,
 

42(4):
 

511-

515.
 

[13] 孙煜,
 

程文宝,
 

俞开程,
 

等.
 

精密隔振器直接扰动

的前馈抑制研究[J].
 

动力学与控制学报,
 

2025:
 

23
(8):

 

22-28.
  

SUN
 

Y,
 

CHENG
 

W
 

B,
 

YU
 

K
 

C,
 

et
 

al.
 

Research
 

on
 

feedforward
 

suppression
 

of
 

direct
 

dsturbances
 

in
 

precision
 

vibration
 

isolators
 

[J].
 

Journal
 

of
 

Dynamics
 

and
 

Control,
 

2025,
 

23(8):
 

22-28.
 

(in
 

Chinese)
 

[14] FENG
 

H,
 

GUO
 

B
 

Z,
 

WU
 

X
 

H.
 

Trajectory
 

plan-

ning
 

approach
 

to
 

output
 

tracking
 

for
 

a
 

1-D
 

wave
 

e-

quation
 

[J].
 

IEEE
 

Transactions
 

on
 

Automatic
 

Con-

trol,
 

2019,
 

65(5):
 

1841-1854.
 

[15] GUO
 

B
 

Z,
 

MENG
 

T
 

T.
 

Robust
 

error
 

based
 

non-

collocated
 

output
 

tracking
 

control
 

for
 

a
 

heat
 

equation
 

[J].
 

Automatica,
 

2020,
 

114:
 

108818.
 

[16] XU
 

G
 

Q,
 

YUNG
 

S
 

P,
 

LI
 

L
 

K.
 

Stabilization
 

of
 

wave
 

systems
 

with
 

input
 

delay
 

in
 

the
 

boundary
 

control
 

[J].
 

ESAIM:
 

Control,
 

Optimisation
 

and
 

Calculus
 

of
 

Variations,
 

2006,
 

12(4):
 

770-785.
 

[17] HIGHAM
 

N
 

J.
 

Functions
 

of
 

matrices
 

theory
 

and
 

computation
 

[M].
 

SIAM,
 

Philadelphia,
 

2008.
[18] KRSTIC

 

M
 

S.
 

Boundary
 

control
 

of
 

PDEs:
 

a
 

course
 

on
 

backstepping
 

designs
 

[M].
 

Philadelphia,
 

PA,
 

USA:
 

SIAM-Society
 

for
 

Industrial
 

and
 

Applied
 

Mathematics,
 

2008.
 

[19] SMYSHLYAEV
 

A,
 

KRSTIC
 

M.
 

Closed-form
 

boundary
 

state
 

feedbacks
 

for
 

a
 

class
 

of
 

1-D
 

partial
 

integro-differential
 

equations
 

[J].
 

IEEE
 

Transac-

tions
 

on
 

Automatic
 

Control,
 

2004,
 

49(12):
 

2185-

2202.
 

[20] WEISS
 

G,
 

CURTAIN
 

R
 

F.
 

Dynamic
 

stabilization
 

of
 

regular
 

linear
 

systems
 

[J].
 

IEEE
 

Transactions
 

on
 

59



动 力 学 与 控 制 学 报 2025年第23卷

Automatic
 

Control,
 

1997,
 

42(1):
 

4-21.
 

[21] JIN
 

F
 

F,
 

GUO
 

B
 

Z.
 

Performance
 

boundary
 

output
 

tracking
 

for
 

one-dimensional
 

heat
 

equation
 

with
 

boundary
 

unmatched
 

disturbance
 

[J].
 

Automatica,
 

2018,
 

96:
 

1-10.
 

[22] WANG
 

L,
 

FENG
 

H.
 

Performance
 

output
 

tracking
 

for
 

a
 

one-dimensional
 

unstable
 

heat
 

equation
 

with
 

in-

put
 

delay
 

[J].
 

IMA
 

Journal
 

of
 

Mathematical
 

Control
 

and
 

Information,
 

2022,
 

39(1):
 

254-274.
  

69


