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基于改进的自适应扩展卡尔曼滤波算法的

道路坡度估算
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摘要 随着智能驾驶技术的不断发展,对高精度的车辆状态信息的需求日渐迫切.道路坡度是车辆行驶的

关键参数,对车辆的动力学控制有着重要影响.高精度低延迟的道路坡度估算是精确控制的前提,可以有效

提升车辆的智能化水平.自适应扩展卡尔曼滤波(AEKF)是道路坡度估计的常用算法,但其在有着不同噪声

条件的复杂工况中存在一定的局限性.本文提出了一种改进的自适应扩展卡尔曼滤波算法,通过动态噪声

缩放因子的设置,提高了复杂工况中道路坡度的估算精度.通过双移线工况和稳态绕圆工况的仿真测试,验

证了该方法的有效性,实现了均方根误差(RMSE)在2°以内的道路坡度估算精度.
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Abstract With
 

the
 

advancement
 

of
 

intelligent
 

driving
 

technology,
 

high-precision
 

vehicle
 

status
 

informa-
tion

 

has
 

become
 

important
 

urgent.
 

Road
 

gradient
 

is
 

a
 

crucial
 

parameter
 

for
 

vehicle
 

operation,
 

having
 

a
 

significant
 

impact
 

on
 

the
 

vehicle􀆶s
 

dynamics
 

control.
 

High-precision
 

and
 

low-latency
 

road
 

gradient
 

esti-
mation

 

is
 

a
 

prerequisite
 

for
 

precise
 

control,
 

which
 

can
 

effectively
 

enhance
 

the
 

intelligence
 

level
 

of
 

the
 

ve-
hicle.

 

Adaptive
 

Extended
 

Kalman
 

Filter
 

(AEKF)
 

is
 

widely
 

used
 

for
 

road
 

gradient
 

estimation,
 

but
 

exhib-
its

 

limitations
 

in
 

complex
 

operating
 

conditions
 

with
 

different
 

noise
 

levels.
 

This
 

paper
 

proposes
 

an
 

im-
proved

 

adaptive
 

Kalman
 

filter
 

algorithm
 

that
 

enhances
 

the
 

estimation
 

accuracy
 

by
 

introducing
 

dynamic
 

noise
 

scaling
 

factors.
  

The
 

effectiveness
 

of
 

the
 

proposed
 

method
 

is
 

validated
 

through
 

simulation
 

tests
 

un-
der

 

double
 

lane
 

change
 

conditions
 

and
 

steady-state
 

circular
 

motion
 

conditions.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

achieving
 

a
 

road
 

gradient
 

estimation
 

accuracy
 

with
 

a
 

Root
 

Mean
 

Square
 

Error
 

(RMSE)
 

of
 

less
 

than
 

2°.
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引言
  

车辆状态参数估算在智能电动化领域具有极

其重要的地位和作用.它不仅关乎电动汽车的性能

和驾驶体验,还直接影响到车辆的安全性和智能化

水平.精确的状态参数估算可以获得关于电动汽车

状态的全面、准确的信息,为车辆的控制系统提供

了可靠的信息输入.这些信息有助于驾驶员更好地

了解车辆状态,做出合理的驾驶决策.因此,在智能

电动化的背景下,加强对状态参数估算技术的研究

和应用具有十分重要的意义.
道路坡度信息在车辆动力学控制中有着至关

重要的作用,它会对底盘电控系统和动力电控系统

中控制策略的实施产生直接影响,同时也对车辆的

安全性、经济性、动力性和舒适性有着重要影响.真
实的道路环境是相当复杂的,道路坡度会在车辆行

驶过程中不断变化[1].当车辆行驶于道路坡度较大

的路面上,行驶阻力会在车辆下坡时降低,上坡时

行驶阻尼则会增加,这种变化会对车辆的动力电控

系统的驱动力分配控制产生影响[2].道路坡度的精

确辨识 能 够 有 效 地 改 善 自 适 应 巡 航 控 制 系 统

(ACC)、车身稳定控制系统(VSC)和自动紧急制动

系统(AEB)等车辆驾驶辅助系统的性能[3].如何准

确、实时获取道路坡度信息是实现智能车辆精确控

制的前提和必要条件.
  

道路坡度可通过传感器直接测量,吴柳莉[4]采

用微机械电子系统(MEMS)实现道路坡度的高精

度提取.然而,传感器的昂贵成本限制了此类方法

在实车上的应用.因此,通过不同方法进行道路坡

度估算是当前的研究热点.冉旭等[5]融合了运动学

坡度估算方法和动力学坡度估算方法,先根据不同

估算方法的适用范围进行置信因子的计算,再通过

广义迟滞滤波得到平稳精确的坡度估算值.为了提

升道路坡度估算对多种工况的适应性,冯继豪等[6]

基于双卡尔曼滤波及概率最近邻数据关联滤波器

进行道路坡度估算,提高了坡度估算的精度和稳定

性.张华达等[7]采用牛顿迭代法对道路坡度进行估

算,有效地降低了车辆状态参数实时估算的耦合效

应,实现了道路坡度的准确估计.基于整车质量和

轮胎力的估算结果,Nada等[8]采用修正的双无迹

卡尔曼滤波算法对车辆状态参数进行估算,增强了

估算的实时性.Henning等[9]通过联合观测的方式

估算了道路坡度,但其估算精度受限于其使用的线

性卡尔曼滤波算法.
  

道路坡度的估算精度与行驶工况和噪声条件

息息相关.Li等[10]基于自适应算法和纵向动力学

模型估算了整车质量和道路坡度,但其不适用于弯

道行驶等复杂工况的道路坡度估算.Jo等[11]融合

了GPS信号和车载传感器对道路坡度进行估算,

增强了坡度估算的精确度和鲁棒性.朱宗凯等[12]

基于遗忘因子递归最小二乘法和自适应卡尔曼滤

波的混合算法对整车质量和道路坡度进行估算,该
方案在坡度较小工况中有着良好的估算效果.郭洪

艳等[13]提出了一种考虑侧向运动的整车质量与道

路坡度估计算法,提高了车辆发生横向运动时的道

路坡度估算精度,但该方法在转弯和坡道共同存在

时的道路坡度估算精度明显降低.可见,提升道路

坡度在复杂工况中的估算精度仍是一个亟须解决

的难点.任志英等[14]基于自适应扩展卡尔曼滤波

算法(AEKF)对车辆质量与道路坡度进行估算,有
效提升了估算模型对复杂环境噪声的适应性.不同

的估算方法需要的计算成本也存在显著不同,严运

兵等[15]提出了一种基于机器视觉与扩展卡尔曼滤

波融合的道路侧向坡度估算方法,对道路侧向坡度

发生变化的坡道有着良好估算效果,但该方案需要

对图像数据进行处理,提高了计算成本.因此,如何

设计一种高精度、低成本的道路坡度在线联合估计

方法,保证在各种行驶工况下的精度和可靠性仍然

是当前研究中的难点,值得进一步开展研究.
  

自适应扩展卡尔曼滤波是道路坡度估计的常

用算法,但其在有着不同噪声条件的复杂工况中存

在一定的局限性.为解决此问题,本文提出了一种

改进的自适应卡尔曼滤波算法,通过动态噪声缩放

因子的设置,提高了道路坡度估计器对动态变化噪

声的抑制效果.

1 车辆动力学模型
  

本文的坐标系如图1所示,车身有着六个运动

自由度.其中,以车辆质心为坐标原点,车辆前进方

向为X 轴正方向,Y 轴与X 轴垂直,Z 轴与地面垂

直且向上为正,坐标轴满足右手定则.
车辆动力学系统有着较强的非线性,并且各个

模态之间有着复杂的耦合效应.一般来说,自由度

更多的车辆模型有着更高的精度,但其复杂程度也
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会显著提高,这会增加车辆状态参数估算的耗时,

不利于车辆的实时控制.因此,需要根据估算的状

态对车辆模型进行合理的简化.
  

道路坡度主要受纵向力的影响,考虑到车辆行

进过程中主要运动模态为纵向、侧向和横摆,建立

如图2所示的具有非线性特性的三自由度车辆动

力学模型,并假设:
(1)质心位置始终不变,即不考虑车辆加减速

与转向过程中的质量转移;
(2)方向盘转角与车轮转角呈线性关系,即不

考虑转向系统的影响;
(3)左前轮和右前轮的转角相同,即忽略前轮

转向梯形的影响,后轮不发生转动.

图1 车辆坐标系定义

Fig.1 Definition
 

of
 

vehicle
 

coordinate
 

system

图2 三自由度车辆动力学模型

Fig.2 Vehicle
 

dynamics
 

model
 

with
 

3
 

DOF

本文的车辆动力学模型如图2所示,则车辆在

各个运动模态的平衡方程分别为:
纵向运动:

m(v·x -vyω)=(Fx_L1+Fx_R1)cosδf+
 (Fx_L2+Fx_R2)-(Fy_L1+Fy_R1)sinδf-
 Fw -Fi

  (1)
侧向运动:

m(v·y -vxω)=(Fx_L1+Fx_R1)sinδf+
 (Fy_L1+Fy_R1)cosδf+(Fy_L2+Fy_R2)

 

(2)
横摆运动:

Izω·=a(Fx_L1+Fx_R1)cosδf+a(Fy_L1+
 Fy_R1)cosδf-b(Fy_L2+Fy_R2)+

 
tf
2
(Fy_L1-Fy_R1)sinδf+

tf
2
(Fx_R1-

 Fx_L1)cosδf+
tf
2
(Fx_R2-Fy_L2)

 

(3)

这里,m 为整车质量;Fx_ij 和Fx_ij 分别代表纵向轮

胎力和侧向轮胎力,下标i
 

=
 

L、R分别表示左右,

下标j
 

=
 

1、2分别表示前后;vx 为车辆纵向速度;

vy 为车辆侧向速度;ω为横摆角速度;Fw 为空气阻

力,Fw=ρCdAv2
x;A 为车辆的迎风面积;ρ 为空气

密度;Cd 为空气阻力系数;Fi 为地面阻力,Fi=

fmgcosθ+mgsinθ;θ为坡度角;f 为摩擦系数;tf
和tr分别为前后轮距;Iz 为绕Z 轴的转动惯量;g
为重力加速度;a 和b分别表示车辆质心到前后轴

的距离.
  

如公式(1)~(3)所示,在车辆的动力学方程

中,纵向加速度与横向速度和横摆角速度有关,这
些交叉项是非线性的.在本文考察的双移线工况和

稳态绕圆工况中,这些交叉项不能忽略,故采用的

三自由度车辆动力学模型具有非线性特性.

2 道路坡度估计算法

2.1 扩展卡尔曼滤波算法
  

传统卡尔曼滤波是一种基于线性空间模型的

递归算法,其对于有着非线性状态方程和测量方程

的系统是不能直接应用的.因此,扩展卡尔曼滤波

算法是为了解决非线性问题所提出的,其将非线性

方程进行线性化处理,从而能够处理非线性系统的

状态估算问题.扩展卡尔曼滤波算法主要分为预测

阶段和更新阶段,其主要的核心要素有状态方程、

观测方程、雅可比矩阵和误差协方差矩阵.
预测阶段:

(1)基于非线性状态方程,采用前一时刻的状

态估计值和控制输入(如果有)来预测当前时刻的

状态.

x̂n,n-1=f(x̂n-1,n-1) (4)
(2)计算表示预测状态不确定性的误差协方差

矩阵.

Pn,n-1=Jf(x̂n-1,n-1)Pn-1,n-1JT
f(x̂n-1,n-1)+

 Qk-1
 (5)

其中,x̂n-1,n-1 和x̂n,n-1 分别为状态变量上一时刻

的最优估计值和当前时刻的先验估计值;Pn-1,n-1

和Pn,n-1 则分别为上一时刻的误差协方差和当前

时刻的先验误差协方差;Jf 为状态方程
 

f
 

对状态
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变量求偏导得到的
 

Jacobian
 

矩阵.
更新阶段:

(3)进行线性化处理,即雅可比矩阵计算.

Jf =

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f3

∂x1

∂f3

∂x2

∂f3

∂x3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(6)

(4)卡尔曼增益计算.
Kn =Pn,n-1HT(HPn,n-1HT+Rn)-1 (7)
(5)利用卡尔曼增益和测量值对先验估计值进

行更新,得到当前时刻的状态估算值.
X^n,n =X^n,n-1+Kn(zn -HX^n,n-1) (8)
(6)对误差协方差矩阵进行更新.
Pn,n =(I-KnH)Pn,n-1 (9)

扩展卡尔曼滤波是一种适用于带高斯白噪声

的弱非线性系统的状态估计算法,其算法收敛速度

快、鲁棒性好、估算精度良好.然而,其并不适用于

强非线性系统,且当外部噪声环境较为复杂时,扩
展卡尔曼滤波的误差也会变大,甚至会出现滤波

发散.

2.2 自适应扩展卡尔曼滤波算法
  

在扩展卡尔曼滤波算法中,过程噪声和测量噪

声是估算模型的关键参数,其在真实的复杂环境中

是不断变化的.传统扩展卡尔曼滤波算法的量测噪

声协方差矩阵和过程噪声协方差矩阵是固定值,对
动态变化噪声的适应性较差.因此,本文提出了一

种改进的自适应扩展卡尔曼滤波算法,分别对量测

噪声协方差矩阵和过程噪声协方差矩阵进行自适

应调整,以减小估算误差和避免出现滤波发散.将
测量值与预测值的差值定义为新息,即

vn =zn -HnX
⌒

  

n,n-1 (10)
  

新息的理论协方差矩阵为

Cn =E(vnvT
n)=HnPnHT

n +Rn (11)
  

在真实环境中,实际的新息协方差矩阵会因建

模误差和测量噪声的存在而与理论值有偏差,其可

表示为

C^n =
1
M∑

M

i=1
vn-ivT

n-i (12)

其中,M 代表滑动窗口大小.
  

为同时适应稳态误差和动态响应,设置滑动窗

口大小的调整策略如下:

M =Mmin, d≥αmax

M =Mmax, d≥αmin

M=int
(d-αmin)(Mmax-Mmin)

αmax-αmin

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,αmin<d<αmax

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

 

(13)
  

其中,d 为调整因子,上下阈值分别为αmax和αmin;

滑动窗口的范围设置为[Mmin,
 

Mmax];int(·)表示

取整.
  

本文的自适应调节方法中,滑动窗口大小的调

整因子d 需要对车辆状态变量的变化快慢进行正

确表征.关于目标定位和跟踪的研究表明,观测目

标的机动变化可用归一化新息平方(normalized
 

innovation
 

square,
 

NIS)进行检测.借鉴此思想,根
据归一化新息平方来判断车辆的状态是否发生较

大的改变,从而可由车辆状态变化的快慢程度来对

滑动窗口的大小进行自适应调节,实现滤波结果的

及时修正,进而提升估算精度.将调整因子定义为:
 

d=vT
nC-1

nvn (14)
  

量测噪声协方差矩阵Rn 可根据新息的理论协

方差和实际协方差的大小进行自适应调整.当C>
C^ 时,减小Rn;当C<C^ 时,按理应放大Rn,但为防

止出现滤波发散,此时不调整Rn 的大小.噪声协方

差的调整因子定义为:

αn =max1,
trace(C^n)
trace(Cn)

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 (15)

  

根据上式,可在计算卡尔曼滤波增益和状态估

计误差协方差矩阵时给出Rn 的修正量.卡尔曼滤

波器增益的自适应调节方式表示为:

Kn =Pn,n-1HT(HPn,n-1HT+αnRn)-1 (16)
  

本文对已有的自适应扩展卡尔曼滤波算法[14]

进行了改进,主要对过程噪声的统计特性进行自适

应调整.当协方差理论值与预测值相同时,表示滤

波器达到了最优估计.因此,可通过二者的差值来

对过程噪声协方差矩阵进行自适应调节.定义缩放

因子为:

κn =
trace(C^n -Rn)
trace(HPn,n-1HT)

(17)
  

因此,改进后的过程噪声协方差矩阵可表示为:

Pn,n =(I-KnH)Pn,n-1+ κnQn,n-1 (18)
  

通过上述步骤,可有效抑制测量噪声和系统噪

声对滤波估算结果的影响,提升模型在复杂工况中

08



第10期 康元顺等:基于改进的自适应扩展卡尔曼滤波算法的道路坡度估算

的滤波性能.

2.3 道路坡度估计器设计
  

本文的道路坡度估算技术路线如图3所示.估
算模型的输入为方向盘转角、纵横向车速、轮胎三

向力和整车质量.输出为实时变化的道路坡度.
   

已有研究的道路坡度估计器大多是基于车辆

的纵向动力学方程进行设计的,此类模型在直线行

驶工况中表现良好,有着较好的估算精度和鲁棒

性.然而,车辆的纵向受力会在转向时发生改变,此
时基于纵向动力学方程设计的道路坡度估计器将

会有着不可忽视的估算偏差.基于第2节建立的纵

向、侧向和横摆运动模态的动力学方程,本文搭建

了适用于转向工况的道路坡度估计器.假定道路坡

度角为较小值且其变化率为小量,即坡度角的空间

倒数为零.因此,以纵横向车速、横摆角速度和道路

坡度为状态变量,可以得到考虑转向得道路坡度估

算系统的状态空间方程,即

 

v·x =
1
m
[(Fx_L1+Fx_R1)cosδf-(Fy_L1+Fy_R1)sinδf+(Fx_L2+Fx_R2)-mgsinθ-

1
2CdAρv2x]+vyω

v·y =
1
m
[(Fx_L1+Fx_R1)sinδf+(Fy_L1+Fy_R1)cosδf+(Fy_L2+Fy_R2)]-vxω

ω· =
1
Iz
[a(Fx_L1+Fx_R1)sinδf+a(Fy_L1+Fy_R1)cosδf-b(Fy_L2+Fy_R2)+

 
tf
2
(Fy_L1-Fy_R1)sinδf+

tf
2
(Fx_R1-Fx_L1)cosδf+

tr
2
(Fx_R2-Fx_L2)]

θ
·
=0

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(19)
  

利用欧拉法对上式进行离散,可得:

vk+1
x

vk+1
y

ωk+1

θk+1

􀮠

􀮢
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

=

vk
x +

1
m
[(Fx_L1+Fx_R1)cosδf-(Fy_L1+Fy_R1)sinδf+(Fx_L2+Fx_R2)- 

 mgsinθ-
1
2CdAρv2

x]+vyω Δt

vk
y +

1
m
[(Fx_L1+Fx_R1)sinδf+(Fy_L1+Fy_R1)cosδf+(Fy_L2+Fy_R2)]-vxω  Δt

ωk +
1
Iz
[a(Fx_L1+Fx_R1)sinδf+a(Fy_L1+Fy_R1)cosδf-b(Fy_L2+Fy_R2)+

 
tf
2
(Fy_L1-Fy_R1)sinδf+

tf
2
(Fx_R1-Fx_L1)cosδf+

tr
2
(Fx_R2-Fx_L2)]Δt

θk

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

+Wk
 (20)

这里,Δt表示采样周期,Wk 表示系统噪声.
考虑到车辆传感器配置,本文以纵横向速度和

横摆角速度为测量变量,则系统的测量方程可表

示为:

zk =

1 0 0 0
0 1 0 0
0 0 1 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

vk+1
x

vk+1
y

ωk+1

θk+1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

+Vk (21)

这里,Vk 表示测量噪声.
  

综上可得,基于动力学的道路坡度估算模型的

状态方程可表示为:

xk+1=f(xk,uk)+Wk (22)

zk =Hxk +Vk (23)
这里,f 为系统矩阵,H 为输出矩阵.结合前文介绍

的自适应扩展卡尔曼滤波原理,即可实现基于动力

学的道路坡度估算.
  

基于非线性动力学模型和改进自适应扩展卡

尔曼滤波算法搭建的道路坡度估计器,相比于通过

传感器测量道路坡度的方式,该方案不需要增加额

外传感器即可实现道路坡度的准确估算,即具备较

低的使用成本.同时,相比于采用机器视觉等先进

算法的道路坡度估算模型,该方法对算力需求较

图3 道路坡度估算技术路线
Fig.3 Technical

 

approach
 

for
 

road
 

gradient
 

estimation

18
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小,计算成本更低.

3 结果分析
  

为验证本文道路坡度估算模型的正确性,本文

采用Carsim和Simulink进行联合仿真,验证了本

文改进的自适应扩展卡尔曼滤波算法(AEKF)的
正确性,并分别考察了双移线工况和稳态绕圆工况

的道路坡度估算精度.双移线工况中分别测试了固

定坡度场景和变坡度场景,并且考察了不同车辆行

驶速度(Vx)和不同路面附着系数(μ)条件下的道

路坡度估算结果.稳态绕圆工况则测试了不同路面

附着系数条件下的道路坡度估算结果.车辆参数如

下:m=1473
 

kg,a=1.015
 

m,b=1.895
 

m,tf=

tr=1.675
 

m,Iz=1536.7
 

kg·m2,轮胎模型采用

Carsim自带的PAC5.2(175/70R13).仿真参数设

置为αmin=2,αmax=10,Mmin=1,Mmax=100.在估

算过程中,过程噪声协方差和量测噪声协方差会不

断进行自适应调整,仿真中过程噪声协方差的初值

设定为Q0=eye(4)×0.01,量测噪声协方差的初

值设定为R0=eye(3)×0.01,状态估计误差协方

差矩阵的初值设定为 P0=eye(4)×1.在本小节

中,以均方根误差(RMSE)作为估算性能的评判

指标.
  

本文搭建的道路坡度估算模型仅适用于弱非

线性的工况,此时的轮胎力可通过Carsim自带的

MF轮胎模型进行较为准确的估算,进而可以实现

道路坡度的有效估计.在本文考察的双移线工况

中,道路坡度的估算精度同样受非线性特性的影

响,此时的车辆动力学模型处于弱非线性区,MF
轮胎模型仍具有较好的精度,可得到精度较高的道

路坡度估算结果.值得注意的是,本文搭建的模型

不适用于强非线性工况,强非线性工况的道路坡度

估算应采用更为先进的估计算法,这不在本文的讨

论范围之内.

3.1 算法验证
  

为验证本文算法的正确性,本小节分别采用传

统的EKF、已有的AEKF和本文改进的AEKF进

行道路坡度估算,场景设置为120
 

km/h行驶的双

移线工况,两种方法的坡度估算结果如图4所示.
图中黑色实线、蓝色短划线、绿色双点线和红色点

划线 分 别 代 表 真 实 坡 度、EKF 估 算 坡 度、已 有

AEKF估算坡度和本文改进 AEKF的估算坡度.
从图中可以看出,EKF在某些时刻(第4

 

s)出现了

较大的估算误差,这是因为EKF对工况和噪声变

化的适应性较差导致的.自适应扩展卡尔曼滤波算

法可以根据不同工况和噪声水平进行自适应调整,

在整个仿真工况中均有着较为良好的估算效果.而
相比于已有的 AEKF算法,本文改进后的 AEKF
算法在估算精度方面略有改善,这表明本文对过程

噪声自适应调整策略的改进有利于提升模型估算

精度.

图4 已有研究与本文方法的坡度估算结果对比

Fig.4 Comparison
 

of
  

road
 

slope
 

estimation
 

results
 

between
 

previous
 

studies
 

and
 

the
 

present
 

study

3.2 双移线工况

3.2.1
 

固定坡度
  

对于双移线工况,道路坡度的估算精度与行驶

车速和道路坡度大小均存在一定联系.行驶车速越

高,车辆的非线性动力学特性越明显,道路坡度的

估算误差越大,如图5~10所示.
图5和图6分别显示了路面附着系数为0.9

和0.5两个工况的道路坡度估算结果.道路坡度固

定为10%,在不同路面附着系数工况中均考察了

行驶速度为120
 

km/h和60
 

km/h的两个双移线

工况的道路坡度估算结果.可以看到,本文搭建的

道路坡度估计模型在不同路面附着系数和车辆行

驶速度下均有着较好的估算效果.在路面附着系数

为0.9的工况中,行驶速度为120
 

km/h的道路坡度

估算的均方根误差为0.1774°,行驶速度为60
 

km/h
的道路坡度估算的均方根误差为0.0917°.

 

在路面

附着系数为0.5的工况中,行驶速度为120
 

km/h
的道路坡度估算结果的均方根误差为0.1715°,行
驶速度为60

 

km/h的道路坡度估算结果的均方根

28



第10期 康元顺等:基于改进的自适应扩展卡尔曼滤波算法的道路坡度估算

误差为0.0816°.
 

图5 双移线工况(μ=
 

0.9)的定坡度(10%)估算结果:
 

(a)RMSE=0.0917°;
 

(b)
 

RMSE
 

=
 

0.1774°
Fig.5 The

 

slope
 

estimation
 

results
 

for
 

double
 

lane
 

change
 

ondition
 

(μ=0.9)
 

with
 

a
 

fixed
 

slope
 

(10%):
(a)

 

RMSE=0.0917°;
 

(b)RMSE=0.1774°

图6 双移线工况(μ=
 

0.5)的定坡度(10%)估算结果:
(a)RMSE=0.0816°;

 

(b)RMSE
 

=
 

0.1715°
Fig.6 The

 

slope
 

estimation
 

results
 

for
 

double
 

lane
 

change
 

ondition
 

(μ=0.5)
 

with
 

a
 

fixed
 

slope
 

(10%):
(a)

 

RMSE=0.0816°;
 

(b)RMSE=0.1715°

类似地,在图7和图8中考察了固定坡度为

20%的工况.从图7可以看到,路面附着系数为0.9

图7 双移线工况(μ=
 

0.9)的定坡度(20%)估算结果:
(a)RMSE=0.4228°;

 

(b)RMSE
 

=
 

0.6920°
Fig.7 The

 

slope
 

estimation
 

results
 

for
 

double
 

lane
 

change
 

ondition
 

(μ=0.9)
 

with
 

a
 

fixed
 

slope
 

(20%):
(a)RMSE=0.4228°;

 

(b)RMSE=0.6920°

图8 双移线工况(μ=
 

0.5)的定坡度(20%)估算结果:
(a)RMSE=0.4435°;

 

(b)RMSE
 

=
 

0.7043°
Fig.8 The

 

slope
 

estimation
 

results
 

for
 

double
 

lane
 

change
 

ondition
 

(μ=0.5)
 

with
 

a
 

fixed
 

slope
 

(20%):
 

(a)RMSE=0.4435°;
 

(b)RMSE=0.7043°
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时,行驶速度为120
 

km/h和60
 

km/h的两个工况

中,道 路 坡 度 估 算 结 果 的 均 方 根 误 差 分 别 为

0.6920°和0.4228°.
 

从图8可知,路面附着系数为

0.5时,行驶速度为120
 

km/h和60
 

km/h的两个

工况中,道路坡度估算结果的均方根误差分别为

0.7043°和0.4435°.
 

因此,在有着不同道路坡度的

固定坡度工况中,本文的算法具有良好的适应能力

和较佳的估算精度.
本文的动力学模型是基于小坡度角假设建立

的,因此坡度角较大的工况会有更大的估算误差.这
与实际计算结果相符,如图5~8所示,同等条件下,

20%固定坡度比10%固定坡度的估算精度更低.
3.2.2

 

变坡度
  

接着,测试了本文的估算模型对道路坡度实时

变化工况的估算效果.变坡度工况中,测试了不同

行驶速度和不同路面附着系数对估算结果的影响.
为方便起见,仿真的道路路面采用Carsim自带的

􀆵Handing
 

course 路面.
  

图9和图10分别显示了变坡度场景下、路面

附着系数为0.9和0.5的两个工况的估算结果.当
路面附着系数为0.9时,行驶速度为120

 

km/h的

图9 双移线工况(μ=
 

0.9)的变坡度估算结果:
(a)RMSE

 

=
 

0.6724°;
 

(b)RMSE
 

=
 

1.3334°
Fig.9 The

 

slope
 

estimation
 

results
 

for
 

the
 

double
 

lane
 

change
 

condition
 

(μ=
 

0.9)
 

with
 

a
 

variable
 

slope:
(a)RMSE=0.6724°;

 

(b)RMSE=1.3334°

图10 双移线工况(μ=
 

0.5)的变坡度估算结果:
 

(a)RMSE
 

=
 

0.6736°;
 

(b)RMSE
 

=
 

1.4121°
Fig.10 The

 

slope
 

estimation
 

results
 

for
 

the
 

double
 

lane
 

change
 

condition
 

(μ=
 

0.5)
 

with
 

a
 

variable
 

slope:
(a)RMSE

 

=
 

0.6736°;
 

(b)RMSE
 

=
 

1.4121°

道路坡度估算结果的均方根误差为1.3334°,行驶

速度为60
 

km/h的道路坡度估算结果的均方根误

差为0.6724°.
 

当路面附着系数为0.5时,行驶速

度为120
 

km/h的道路坡度估算结果的均方根误

差为1.4121°,行驶速度为60
 

km/h的道路坡度估

算结果的均方根误差为0.6736°.
 

这表明,本文的

估算模型在变坡度工况中同样具有较高的估算精

度,能够实时准确地反映道路坡度的动态变化.
  

在本文仿真的双移线工况中,当行驶车速及路

面附着条件一致时,固定坡度工况的均方根误差要

小于变坡度工况的均方根误差,如图5~10所示.
  

如图5~8所示,双移线定坡度工况的估算结

果有较为明显的起伏变化,这是由轮胎力估算误差

引起的.本文的轮胎力是基于Carsim自带的 MF
轮胎模型进行估算的,当车辆在坡道上转弯时,轮
胎的非线性特性会变得更加复杂,轮胎力的估算误

差会随着坡度增大而增大,进而对坡度估算结果产

生影响.固定坡道工况中估算结果出现较大起伏的

地方均处于车辆在坡道上转弯的时刻.而在变坡度

工况中,在车辆发生转弯时的道路坡度值较小(相
比于本文考察的固定坡度),因此轮胎力的估算误
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差也相应较小,所以估计值的起伏也较小.

3.3 稳态绕圆工况
  

稳态绕圆测试是车辆操稳测试中的重要手段

之一,通过在固定半径的圆形车道上逐渐加速,直
至车辆发生较大滑移,偏离行驶线时测试结束.分
别测试了两种不同路面附着系数的工况.图11和

图12分别展示了路面附着系数为0.9和0.5的道

路坡度估算结果.可以看到,当车速较低时,本文搭

建道路坡度估计模型有着较好的估算效果.当路面

附着系数为0.9时,道路坡度估算的均方根误差为

0.0750°.
 

当路面附着系数为0.5时,道路坡度估算

的均方根误差为0.0286°.
 

值得注意的是,随着车

速进一步增大,车辆会发生较大的滑移且轮胎特性

会呈现强非线性特征,此时便不能采用本文的模型

对道路坡度进行估算,应采用更为先进的估计算法

进行估算,这不在本文的讨论范围之内.

图11 稳态绕圆工况(μ=
 

0.9)的道路坡度估算结果,
 

RMSE=0.0750
Fig.11 The

 

road
 

slope
 

estimation
 

results
 

for
 

the
 

steady-state
 

circle
 

condition
 

(μ=
 

0.9),
 

RMSE=0.0750

图12 稳态绕圆工况(μ=
 

0.5)的道路坡度估算结果,
 

RMSE=0.0286
Fig.12 The

 

road
 

slope
 

estimation
 

results
 

for
 

the
 

steady-state
 

circle
 

condition
 

(μ=
 

0.5),
 

RMSE=0.0286
  

道路坡度的估算精度与行驶工况息息相关,对
于无转弯的直线匀速行驶工况,本文的均方根误差

能达到0.2°左右,相比现有文献具有较高的道路坡

度估算精度.此外,从实用角度来看,为满足整车控

制的需求,道路坡度的估算误差应低于一定限值.
对于本文所考察的双移线工况和稳态绕圆工况,坡

度估算的均方根误差低于2°已经能满足整车控制

的精度需求.

4 结论
  

本文提出了一种改进的自适应扩展卡尔曼滤

波算法,通过动态噪声缩放因子的设置,提高了复

杂工况中道路坡度的估算精度.基于 Carsim 和

Simulink的联合仿真,测试验证了开发的道路坡度

估算模型在双移线和稳态绕圆工况的估算精度.结
果表明,在不同路面附着系数和行驶速度下,搭建

的道路坡度估计器在双移线工况和稳态绕圆工况

中均有着较为良好的估算精度,道路坡度估计均方

根误差RMSE在2°以内,满足整车控制对坡度的

精度需求,这为提升电动汽车的智能化水平提供了

有力支持.
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