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Experimental Study on Wind-induced Vibrations and Control of a Steel Nose of a
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Abstract Based on the Shanxi Linyi Yellow River Bridge, an experimental study was conducted on the
wind-induced vibrations and control of an ultra-long steel launching nose during the incremental
launching construction of a steel-concrete composite girder bridge. First, the dynamic characteristics of
the bridge structure were analyzed using the finite element method. Then, aeroelastic models of the
bridge with the launching nose were designed and fabricated. Wind tunnel tests under turbulent flow
conditions were carried out to examine the buffeting responses of the launching nose under different yaw
angles. Finally, considering the actual characteristics of the bridge, an inclined stay cable system an-
chored at the center of the pier was proposed to suppress the wind-induced vibrations of the launching

nose. The results show that under the design reference wind speed, the standard deviations of vertical
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and lateral displacements at the cantilever tip of the launching nose are 0. 10 m and 0. 04 m, respectively.
Within a yaw angle of 30°, the vibration responses remain relatively constant, while a significant reduc-

tion is observed when the yaw angle exceeds 30°. The proposed inclined wind-resistance cables can re-

duce the vertical vibration magnitude at the cantilever tip by approximately 50 %.
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Fig. 1 General elevation of the bridge at launching (unit:m)
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