55 23 #5510 # o L5 HE E R Vol. 23 No. 10
2025 4F 10 A JOURNAL OF DYNAMICS AND CONTROL Oct. 2025

W& Y5 :1672-6553-2025-23(10)-061-007 DOI1:10.6052/1672-6553-2025-053

T 1) L 51 9L 1 R 3R A5 9 41 5

WE WNEF KHE Wxr HERT
(1. PP CHL BRI AT . JEH 110035)
(2. TS LR K2 MLZs LR 454 97 2 B sl s E A A SC 0=, i st 210016)

FEE R RS A A% 3 IR Bl 25 A0 A M P R S G P B X n B A W AR 1 4 2l K Mk S O Ak TRD A, 4R
T3 S A A S A AT R A B i L U IR AR R AR Y T vk AR ST D 30 S0 T e A A R B SR R 4
F T 0 ML AL AR % B2 VR O i A5 AR 9 — B R A AR 3R R AT O k. 7E DR e U0 AL BT S g 5 AR B A N AR Y
SR I T AR b s i 04 g5 08 4 A . I %08 Ak TS B4 i A A AT RS IR LB S R AT, 25 R SR
B < O A 0 5 A7 T AR AE A T S R AT R R B B T L AR T T I — B AR S A S, O R T T A v AR A
— 2 AT PN A R

KR AR, WwIMEL, BEREER, RAE

R E 225 :0342;TB535 MEKARERS A

Topology Optimization for Vibration and Noise Reduction
of Stiffened Thin Plate Structures”
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Abstract Low- and medium-frequency noise induces vibrations to the cabin structure, which subse-
quently radiates noise into the interior. In order to solve the vibration and noise optimization problem of
stiffened thin plates, this study employs topology optimization to enhance the vibration and noise reduc-
tion effects by optimizing the layout of stiffeners. This study focuses on four-edge clamped stiffened thin
plates and employs density-based topology optimization method to maximize its first-order modal fre-
quency. Under the constraint of constant mass, the optimal distribution of stiffeners on the plate is de-
signed. Modal, stiffness, and sound transmission loss analyses are conducted for the stiffened thin plate
before and after optimization. The results show that the optimized stiffened plate achieves an increase in
its first-order modal frequency and improves sound transmission loss within a certain frequency range,

without significantly reducing the overall stiffness.
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Fig. 1 Flow chart of topology optimization
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