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Analysis of Blade Tip Clearance of Coaxial Rigid Rotor in Forward Flight

Zhao Jinrui  Yu Zhihao' Cheng Yi Fan Feng Jiang Qihuang
(National Key Laboratory of Helicopter Aeromechanics, CHRDI, Jingdezhen 333001, China)

Abstract Blade tip clearance is one of the most critical factors affecting the flight safety of coaxial rigid
rotor helicopters. To accurately predict the blade tip clearance during forward flight, this study establi-
shes a rotor/body coupling aeroelastic model based on 15-degree-of-freedom (15-DOF) medium-
deformable beam and free wake model. Validation against the rotor natural frequency of XH-59A
demonstrates a computational error that less than 5%, demonstrating the accuracy of the forward-flight
blade tip clearance prediction method. The proposed method is then applied to analyzing the influence of
lateral differential control, pitch angle, and sideslip angle on blade tip clearance during forward flight.
The results indicate that lateral differential control can effectively control rotor rolling moment, and
lateral differential control serve as a reliable means to ensure safe blade tip clearance during forward
flight. Additionally, reduction in fuselage pitch angle during forward flight leads to more critical blade
tip clearance conditions. An increase in sideslip angle affects the rotor lift offset and reduce blade tip

clearance.

Key words coaxial rigid rotor, blade tip clearance, medium-deformable beam, free wake model
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