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Model Predictive Inverse Kinematics for Joint Limit Avoidance

in Redundant Manipulators”

Sun Haoxiang Wang Xiao Song Hanwen'
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Abstract The inverse kinematics of redundant manipulators must avoid joint limits to ensure solutions
comply with the actual physical constraints. Conventional based on differential kinematicsbased methods
typically consider only local instantaneous states and cannot guarantee that the joints remain within the
physical limits throughout continuous motion. To address this issue, this paper proposes an inverse ki-
nematics method for redundant manipulators based on model predictive control. By combining the null
space parameterization of the Jacobian matrix, the proposed method effectively accounts for the future
evolution of the system’s kinematic states and constraints. The constraints and optimization objective
functions are designed to handle joint limits. The inverse kinematics problem is transformed into a con-
strained optimization problem, where redundancy is fully exploited to avoid joint limits. Furthermore,
to ensure the feasibility of the optimization problem, a task scaling method is introduced to handle viola-
tions of constraints by the end-effector velocity. Simulation results on a 7-DOF redundant manipulator
demonstrate that, compared with benchmark methods, the proposed method can predict and avoid po-

tential joint limit violations while accurately tracking the target trajectory of the end-effector.
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Fig. 6 Dynamic joint position limits: Joint trajectories and ratios
of the most critical joint position to the limit. Dashed lines in
the left plot are limits for joints 4 and 6, with the area above

indicating violations
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Fig. 7 Dynamic joint position limits: Joint velocities, joint torques

and end-effector position errors obtained by our method
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