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Dynamic Modeling Method and Vehicle Responses of the Floating Bridge

Considering the Stiffness of Connected Hinges and Supported Pontoons "
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(1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China)
(2. Key Laboratory of Bridge Engineering Safety Control by Department of Education,

Changsha University of Science and Technology, Changsha 410114 ,China)

Abstract For a new type of multi-segment pontoon bridge with alternately supported floats in the span
range, a theoretical model of the dynamic response is established which can simultaneously consider the
roles of connection hinge stiffness and float support stiffness. In the model, the pontoon segments are re-
garded as Euler-Bernoulli beams with hinges at both ends, while the action of the floating body and the
hydrostatic water is equivalent to the elastic support distributed along the length of the beams. The adja-
cent segments are connected by hinges with rotational stiffness. The relationship between the structural
self-resonance characteristics and the moving vehicle load response with the above two stiffness parame-
ters is investigated. The results show that the proposed method can effectively obtain the response sensi-
tivity interval of the floating body support stiffness and the rotational stiffness of the connection hinges.
As the rotational stiffness increases, the segment connection transitions from articulation to rigidity, and
the relative angle of the two ends of the hinged joint in the modal state is changed from the “sharp angle”

mutation form to the smooth form. When the rotational stiffness is smaller, there is the vertical direc-
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tion of the connection. When the rotational stiffness is small, significant vertical displacement extremes

and corner mutations occurs on the connection; however once the stiffness reaches a certain value, the

structural displacement and internal force envelope tends to be stable.

Key words floating bridge structure,

hinge, frequency and mode,
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Fig. 1 Schematic diagrams of structural model and theoretical model of floating bridge
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Fig. 6 Displacement, angle and bending moment envelope diagram of pontoon bridge structure under moving vehicle loads
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