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Abstract To investigate the influence of geometric nonlinearity on human-induced vibrations of flexible
suspension bridges. A nonlinear finite-element model of a flexible pedestrian suspension bridge is estab-
lished based on an engineering background, and validated using measured data. On this basis, nonlinear
transient vibration analysis of the suspension bridge, considering geometric nonlinearity, is conducted.
The analysis reveals that the structural displacement response time histories and time-frequency charac-
teristics under different main cable sag-to-span ratios and excitation amplitudes, as well as the response-
excitation amplitude curves. The results further show that single-frequency excitation at low-order verti-

cal modes can induce high-order frequency vibrations at 1 ¢ 2 and 1 : 3 ratios. When the ratio of vertical
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to horizontal natural frequencies is close to 2 ¢ 1, a certain level of vertical excitation on the main girder

can cause lateral sway of the structure. Increasing the main cable sag-to-span ratio can effectively sup-

press vertical and lateral coupling vibrations. As the vertical excitation level increases, the sway amplitude

exhibits a sudden jump and significant increase at a critical excitation level. Under pedestrian-induced excitation,

the flexible suspension bridge exhibits significant geometric nonlinear vibration characteristics.

Key words flexible suspension bridge,

instability
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Table 1 Geometric and mechanic parameter of Ramello suspension footbridget*!
Component Parameter Unit Actual bridge veloe Finite element model
Area(A}) m’ 1.127X10 * X2 2.438%10 ¢
Vertical moment of inertia([,) m* 2.118%10°° 2.118x10°
Longitudinal beam Lateral moment of inertia(I,) m' 1.786>x10° 1.786Xx10 °
Elastic modulus(E ) GPa 210 210
Density(p;,) kg/m® 7850 7850
Area(A ) m’ 1.434x107° 1.434X10°°
Transverse beam Elastic modulus(E ) GPa 210 2.1%10°
Density(p,) kg/m® 7850 1.0x10 °
Area(A ) m? 7.29x10"" 7.29%x10""
Hanger Elastic modulus(E ) GPa 210 2.1x10°
Density(p,) kg/m® 7850 1.0x10"°
Area(A ) m’ 1.26X10 *X3 2.84x10"°
Cable Elastic modulus(E ) GPa 160 160
Density(p.) kg/m® 7850 7850
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Table 2 Modal results of Ramello suspension footbridge: comparison between finite element model and field measured

Mode fff;ii freqifzfj/ﬂz frel:f::;:;e/dl—lz Af (%) MAC Mode fﬁiﬁﬁ freqi\ngsl/Hz frel(\fueeascuyre/dﬁz AfCH) MAC
1 1st LS 0. 315 / / / 11 3rd VA 1. 301 1. 345 3.34 0.928
2 1st VA 0.431 / / / 12 3rd VS 1.505 1.531 1.71  0.886
3 1st VS 0. 606 0.612 1.03 0.987 13 4th LS 1.589 / / /
4 2nd VA 0.855 0.894 4.42 0.998 14 5th LS 1.591 / / /
5 2nd LS 0.913 / / / 15 4th VA 1.768 1.803 1.95 0.986
6 3rd LS 0.972 / / / 16 4th VS 1.947 1.980 1.66 0.983
7 1st LA 1.047 / / / 17 4th LA 2.021 / / /
8 2nd VS 1. 052 1. 089 3.44 0.973 18 5th LA 2.021 / / /
9 2nd LA 1.141 / / / 19 6th VS 2.160 / / /
10 3rd LA 1.216 / / / 20 5th VA 2. 264 2.311 2.02 /
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Fig. 4 Internal forces distribution of the main cable
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Table 3 Loading cases

Load case k,/m Frequency /Hz k,/(N/m’) A¢/(N/m)

1 4.53 0.606 275 1247
2 4.53 1. 947 50 227
3 4.53 0.972 306 1386
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Fig. 8 Time-history and corresponding time-frequency spectrum of

mid-span displacement response of the main girder under Case 1:

(a) Vertical displacement response at mid-span; (b) Lateral

displacement response at mid-span
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