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Vibration Control of a Timoshenko Fluid-Conveying Pipe Based on

Nonlinear Energy Sink
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(2. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China)

Abstract Fluid-conveying pipes hold significant engineering value. In practical applications, pipes are
often subjected to vibrations due to various factors. Excessive vibration amplitudes may lend to damage
to the pipe itself and its supporting structures, while even small-amplitude vibrations can cause cumula-
tive fatigue over time. Therefore, mitigating pipe vibrations has become a critical issue that needs to be
addressed. In this study, a fluid-conveying pipe model is established based on the Timoshenko beam
theory. The nonlinear energy sink (NES) cell, as a novel vibration suppression concept, is applied to re-
duce pipe vibrations. The governing equations of the system are derived using the generalized Hamilton’
s principle, and the system’s natural frequencies are obtained through the complex modal method. The
system’s response is solved using the harmonic balance method and numerical simulations. Further-
more, the effects of different NES cell quantities and installation configurations on vibration-suppression
performance are investigated. The results indicate that when the external excitation is near specific fre-
quencies, a single-point concentrated distribution exhibits superior vibration reduction performance,

whereas multi-point concentrated and uniform distributions provide superior suppression performance
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Fig. 1 The schematic diagram of model in the fluid-conveying
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Table 1 The first four natural frequencies of
the fluid-conveying pipe
Results/Hz
Order CMM FEM
1 213.10 215.52
2 544,70 538.73
3 960. 05 952.12
4 1440. 42 1414.6
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Table 2 Example parameters

Symbol Value and unit Symbol Value and unit
L 1.6 m F, 100 N
D 0.14 m o1 1000 kg/m®

0.132 m \% 1m/s

Op 7930 kg/m® l Im
E 194 GPa m 0.5 kg
P 0.3 ky 5x10° N/ m®
G 74.6 GPa [aN 3 Ns/m
I, 3.955%10 ° m' k 500 N/m
¢y 10 Ns/m H 0.01 m
s 0.667 m N 10
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