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Applications and Developemnt Trends of Structural Dynamics Modeling

Techniques in Launch Vehicle Engineering

Zheng Wei Mao Yuming' Sun Dan  Zhu Chunyan Shu Zhongping
(Aerospace System Engineering Shanghai. Shanghai 201109, China)

Abstract Structural dynamics modeling is a crucial technological task in the development of launch vehi-
cles, load design, mechanical environment prediction, control system design, and POGO vibration sup-
pression. Based on the evolutionary process of launch vehicles technologies, this paper reviews the
development and application of structural dynamics analysis from four modelling approaches: the beam
model, beam-shell hybrid model, the 3D model based on direct modeling and the 3D model based on
model assembly. Building on advances in numerical computation and the iterative refinement of launch
vehicle methodologies, this paper further examines several emerging trends in the field several aspects,
including efficient liquid-solid coupling computational technology, multidisciplinary dynamics analysis
technology, dynamics analysis twin technology, and launch vehicle dynamics analysis technology based

on artificial intelligence.
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