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Discrete Sequential Quadratic Hamiltonian Algorithm for One Dimensional

Elliptic Optimal Control Problems "

Xiang Qingin Chen Hao'

(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)

Abstract Recently, Breitenbach and Borzi have proposed a sequential quadratic Hamiltonian method for
solving elliptic optimal control problems in the optimize-then-discretize framework. They prove the mon-
otonic convergence of the algorithm in the continuous space case. However, the properties of the discrete
version of the iterative procedure have not been yet tackled with in the discretize-then-optimize frame-
work. In this paper we present a center difference scheme for one-dimensional elliptic optimal control
problems and prove that the scheme preserves the monotonic properties of the sequential quadratic Ham-

iltonian method. Numerical experiments show that the proposed algorithm is effective and convergent.
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