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摘要 近期,Breitenbach和Borzì在“先优化再离散”框架下提出了一类求解椭圆最优控制问题的序列二次

哈密顿方法.他们证明了该迭代方法在连续空间情形下的单调收敛性.然而,在“先离散再优化”框架下,该

迭代方法在离散情形下的收敛性质尚未被解决.本文探讨了一维椭圆最优控制问题的一类中心差分离散格

式,并证明了其能保持序列二次哈密顿迭代的单调收敛性.数值实验表明了该方法是有效且收敛的.
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and
 

Borzì
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引言

偏微分方程(PDE)最优控制问题的应用广泛,

覆盖了医学[1]、生态学[2]、工程学[3]等诸多领域,具
有重要的实际意义.通过优化控制变量,PDE最优

控制问题能够显著提高效率、降低成本、改善性能,

从而推动各行业技术的进步和创新.最优控制理论

的研究方法多种多样,主要包括Pontryagin等[4]

提出的Pontryagin极大值原理,Bellman[5]创立的

动态规划方法以及Kalman[6]发展出的线性二次系

统的最优控制理论.这些方法为最优控制理论的发

展奠定了坚实的基础.
在PDE约束优化问题的数值求解中,根据问

题结构和计算需求的不同,目前主要存在两种求解
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策略:先离散再优化和先优化再离散.先离散再优

化是先对状态变量和控制变量进行参数化处理,将
最优控制问题转化为一系列有限维的优化问题,再
选择合适的优化算法进行数值求解.先离散再优化

在实践中表现出很强的鲁棒性,可以参考文献[7].
但是随着离散的空间和时间步长不断减小,计算量

呈非线性快速增长.先优化再离散是先在连续空间

中推导出最优控制问题的最优性条件(如Pontrya-

gin极大值原理),得到连续的最优性系统(包括状

态方程和伴随方程),再对其进行离散求解.
PDE约束优化问题是一个无穷维空间上的优

化问题,涉及函数空间的优化算法和离散方法等方

面.随着研究的不断深入,求解PDE约束优化问题

的方法不断丰富,常用的优化算法包括原对偶积极

集方法[8,9]、序列二次规划方法(SQP)[10,11]、增广

Lagrange方法[12]、交替方向乘子算法(ADMM)[13]

等;常用 的 离 散 方 法 包 括 有 限 元 方 法[14]、谱 方

法[15]、有限差分法[16]等.
针对椭圆最优控制问题的数值求解,研究者们

基于不同特征提出了多种有效的离散方法.例如

Dai和Chen[17]使用有限元方法处理非线性椭圆方

程约束的最优控制问题,从理论上严格证明了该方

法具有超收敛特性.在控制与状态双重约束情形

下,Chen等[18]研究了椭圆最优控制问题的Galer-

kin谱方法,不仅推导了先验误差估计,还推导了

后验误差估计.Chen等[19]研究了将谱方法推广至

椭圆及抛物最优控制问题,并给出了该方法的误差

估计结果.
基于离散最优控制系统的特点,选择合适的优

化算法至关重要.Li等[20]将共轭梯度法与有限体

积元素法结合,用于求解线性椭圆最优控制问题,

并给出了先验误差估计.Song等[21]提出一种具有

非精确结构的交替方向乘子算法,用于求解带L1

范数控制代价的椭圆最优控制问题,不仅证明了算

法的全局收敛性,还分析了其收敛速率.Zhang
等[22]使用了带线搜索条件的共轭梯度算法,用于

求解线性椭圆最优控制问题,获得了包括全局收敛

性和线性收敛速率在内的完整理论结果.
近期,Borzì等[23,24]在“先优化再离散”框架下

提出了一类求解最优控制问题的序列二次哈密顿

(SQH)算法,该方法基于Pontryagin极大值原理,

且其特别适用于求解非光滑、非凸最优控制问题.

SQH方法通过逐点优化增广哈密顿函数来实现求

解,具体过程为:该方法首先引入初始控制变量,并
基于此计算出初始状态变量,然后进入迭代循环阶

段,依次更新伴随变量、控制变量和状态变量,直到

满足收敛条件.SQH 迭代算法在求解椭圆最优控

制问题时表现出了优良的鲁棒性和高效性,Bre-
itenbach和Borzì已证明SQH迭代方法在连续空

间情形下是单调收敛性的,但其在“先离散后优化”

框架下的对应算法及单调收敛性质尚未被讨论.
鉴于此,本文的主要目的是探讨在“先离散再

优化”的框架下SQH 算法的单调收敛性.我们主

要考虑一维椭圆最优控制问题,在“先离散再优化”

框架下,针对一类中心差分离散格式,我们得到了

离散的SQH 算法,并证明了该方法的单调收敛

性.数值实验验证了该方法的单调收敛性.

1 椭圆最优控制问题

本文考虑如下的最优控制问题:

min
u∈Uad

J(y,u)=min
u∈Uad∫

b

a
l[x,y(x),u(x)]dx

(1)

满足状态方程约束

-y″=f[x,y(x),u(x)],
  

x∈ (a,b)

y'(a)-αy(a)=g1

y'(b)-βy(b)=g2

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (2)

式中,y:[a,b]→R 是状态变量,表示系统的状

态;u:[a,b]→R 是控制变量,通过影响系统来达

到最优化目标;l:[a,b]×R×R→R 是运行成本;

f:[a,b]×R×R→R;J(y,u)是目标泛函;α,β,

g1,g2 ∈R 且α≥0,β≤0.这里控制变量的约束

集为:

Uad= {u(x)∈L2(a,b):u(x)∈Kad,∀x∈[a,b]}

(3)

式中,L2(a,b)是[a,b]上的平方可积函数空间,

Kad 是R 中的紧致子集.
对于上述最优控制问题,我们定义哈密顿函数:

H(x,y,u,p)=pf(x,y,u)+l(x,y,u)
(4)

式中,p:[a,b]→R 为伴随变量,其代表了对应于

状态变量y 的拉格朗日乘子.
由Pontryagin极大值原理[25]可知,最优控制

问题(1)~(3)的一阶必要条件为:
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-y″=Hp(y,u,p)=f(x,y,u)

y'(a)-αy(a)=g1

y'(b)-βy(b)=g2 (5)

-p″= Hy(y,u,p)=fy(x,y,u)p+ly(x,y,u)

p'(a)-αp(a)=0

p'(b)-βp(b)=0 (6)

u(x)=argmin
v∈Kad

H[x,y(x),v,p(x)],

∀x∈ [a,b] (7)

为了数值实现(5)~(7),Borzì等引入了增广

哈密顿函数:

Hε(x,y,u,v,p)=H(x,y,u,p)+

 ε(u-v)2 (8)

式中,ε>0为正则化参数,并设计了一类单调收敛的

SQH方法(参见文献[23]).该SQH方法在“先离散

再优化”框架下是否仍能保持单调收敛性质是一个

有意义且尚未明确解决的问题.本文将构造求解一

维椭圆最优控制问题的一类基于二阶中心差分格式

的离散序列二次哈密顿算法,并探究其单调收敛性.

2 空间离散格式

我们将区间 [a,b]等距划分,空间网格为a=
x0<x1<…<xN =b,空间步长h=(b-a)/N.
考虑状态方程(2)的如下二阶中心差分格式:

-
yn-1-2yn +yn+1

h2 =f(xn,yn,un),

n=1,2,…,N -1 (9)

式中,yn 和un 分别是y(xn)和u(xn)的近似解.
对于边界处的离散,我们引入虚拟变量y-1 和

yN+1,对微分方程在x=a、b处利用中心差分离散,

对边界条件利用一阶导的中心差分离散,消去虚拟

变量y-1 和yN+1,最终得到边界点的差分格式:
(1+hα)y0-y1

h2 =-
g1

h +
1
2f
(x0,y0,u0)

(10)

-yN-1+(1-hβ)yN

h2
=

g2
h +

1
2f
(xN,yN,uN)

(11)

我们 利 用 复 合 梯 形 公 式 h
2l
(x0,y0,u0)+

h∑
N-1

n=1
l(xn,yn,un)+

h
2l
(xN,yN,uN)来近似目标

泛函中的积分项∫
b

a
l[x,y(x),u(x)]dx.

应用上述离散格式,我们可以定义如下离散最

优控制问题:

minJN(y,u)=
h
2l
(x0,y0,u0)+h∑

N-1

n=1
l(xn,

 yn,un)+
h
2l
(xN,yN,uN) (12)

满足

(1+hα)y0-y1

h2 =-
g1

h +
1
2f
(x0,y0,u0)

-yn-1+2yn -yn+1

h2
=f(xn,yn,un),

 

n=1,2,…,N-1

-yN-1+(1-hβ)yN

h2 =
g2

h +
1
2f
(xN,yN,uN)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(13)

式中,y=(y0,y1,…,yN)T,u=(u0,u1,…,uN)T.

  上述优化问题相应的拉格朗日泛函为:

L(y,u,p)=
h
2l
(x0,y0,u0)+

 h∑
N-1

n=1
l(xn,yn,un)+

h
2l
(xN,yN,uN)+

 h
2p0

[
(-2-2hα)y0+2y1

h2
-
2g1
h +f(x0,y0,u0)]+

 h∑
N-1

n=1
pn[

yn-1-2yn +yn+1

h2 +f(xn,yn,un)]+

 h
2pN

2yN-1+(-2+2hβ)yN

h2 +
􀭠
􀭡

􀪁
􀪁

 
2g2

h +f(xN,yN,uN)
􀭤
􀭥

􀪁
􀪁 (14)

式中,p=(p0,p1,…,pN)T 为(13)的拉格朗日乘子.
离散优化问题(12)、(13)的一阶最优性条件可

通过如下方式获得:

∂L(y,u,p)
∂pn

=0,
∂L(y,u,p)
∂yn

=0,

n=0,1,…,N (15)

由此我们可以得到离散的伴随方程:

(1+hα)p0-p1

h2 =
1
2fy(x0,y0,u0)p0+

 12ly(x0,y0,u0) (16)

-pn-1+2pn -pn+1

h2 =fy(xn,yn,un)pn +

 ly(xn,yn,un), n=1,2,…,N -1 (17)

-pN-1+(1-hβ)pN

h2
=
1
2fy(xN,yN,uN)pN +
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 12ly(xN,yN,uN) (18)

对比状态方程的差分离散,我们不难发现(16)~
(18)为连续伴随方程(6)的中心差分离散,即有pn

为p(xn)的近似解.因此,我们先离散后优化所得到

的离散系统为先优化所得到的一阶连续最优性条件

(5)、(6)的相容逼近,即优化与离散是相容的.
利用哈密顿函数(4),离散状态方程与离散伴

随方程可以重写为哈密顿结构,进一步可获得离散

的一阶最优性条件:

(1+hα)y0-y1
h2

= -
g1
h+

1
2Hp(x0,y0,u0,p0)

(19)

-yn-1+2yn -yn+1

h2 =Hp(xn,yn,un,pn),

n=1,2,…,N -1 (20)

 
-yN-1+(1-hβ)yN

h2
=

g2
h+

1
2Hp(xN,yN,uN,pN)

(21)

(1+hα)p0-p1

h2 =
1
2Hy(x0,y0,u0,p0)

(22)

-pn-1+2pn -pn+1

h2 =Hy(xn,yn,un,pn),

n=1,2,…,N -1 (23)

-pN-1+(1-hβ)pN

h2
=
1
2Hy(xN,yN,uN,pN)

(24)

un=argmin
v∈Kad

H(xn,yn,v,pn),
 

n=0,1,…,N

(25)

令

A=

1+hα -1

-1 2 -1
⋱

-1 2 -1

-1 1-hβ

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,

F(y,u)=

-
g1

h +
1
2f
(x0,y0,u0)

f(x1,y1,u1)

︙

f(xN-1,yN-1,uN-1)

g2

h +
1
2f
(xN,yN,uN)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,

B(y,u)=diag[
1
2fy(x0,y0,u0),fy(x1,y1,u1),

…,fy(xN-1,yN-1,uN-1),
1
2fy(xN,yN,uN)],

D(y,u)= [1
2ly(x0,y0,u0),ly(x1,y1,u1),…,

ly(xN-1,yN-1,uN-1),
1
2ly(xN,yN,uN)]T.

则式(19)~(21)可写为矩阵形式

Ay=h2F(y,u) (26)
式(22)~(24)可写为

Ap=h2B(y,u)p+h2D(y,u) (27)
令

wn =
1
2
, n=0,N,

1, n=1,…,N -1,

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

我们定义如下范数

‖y‖2w =h<y,y>w =h∑
N

n=0
wnyn

2 (28)

为了实现离散的一阶最优性条件(19)~(25),
我们设计了离散的SQH算法如表1所示.

表1 离散的SQH算法

Table
 

1 Discrete
 

SQH
 

algorithm

算法1 离散SQH方法求解一维椭圆最优控制问题

输入:初始迭代值u0,最大迭代次数kmax,容许误差κ>0,ε>
0,σ>0,η>0,且ζ∈ (0,1),设置τ>κ,k=0.

1)计算离散状态方程的解y0,

Ay0=h2F(y0,u0).

while(k<kmax&&
 

τ>κ)do

2)计算离散伴随方程的解pk,

Apk =h2B(yk,uk)pk +h2D(yk,uk).

3)确定uk+1
n 以满足以下最优化问题,

Hε(xn,y
k
n,u

k+1
n ,uk

n,p
k
n)= min

v∈Kad
Hε(xn,y

k
n,v,u

k
n,p

k
n),n =

0,1,…,N.

4)计算离散状态方程的解yk+1,

Ayk+1=h2F(yk+1,uk+1).

5)计算τ=‖uk+1-uk‖2w.

6)如果JN(y
k+1,uk+1)-JN(y

k,uk)>-ητ,令ε=σε,回到

第三步.
如果JN(y

k+1,uk+1)-JN(y
k,uk)≤-ητ,令ε=ζε,进入下一步.

7)k=k+1.

end while

3 收敛性分析

本节主要给出离散SQH方法的收敛性分析,

我们假设最优控制问题(1)~(3)满足如下的条件.
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假设1 在f 和l各自定义域中包含的任何

紧致子集中,存在Lipschitz常数c1、c2>0,常数

c3、c4>0使得

|fy(x,y1,u1)-fy(x,y2,u2)|≤
 c1(|y1-y2|+|u1-u2|) (29)

|ly(x,y1,u1)-ly(x,y2,u2)|≤
 c2(|y1-y2|+|u1-u2|) (30)

fy(x,y,u)<-c3 (31)

ly(x,y,u)<c4 (32)

假设2 存在常数c5、c6>0,使得

(y1-y2)[f(x,y1,u1)-f(x,y2,u2)]≤
 -c5|y1-y2|2+c6|y1-y2|·|u1-u2|

(33)

引理1 设假设1和假设2成立,令y、y~ 分别

满足

Ay=h2F(y,u),Ay~ =h2F(y~,u~) (34)

则存在正常数a1 使得

‖y-y~‖2w ≤a1‖u-u~‖2w (35)

证 将(34)中的两式相减可得

A(y-y~)=h2F(y,u)-h2F(y~,u~) (36)

上式与y-y~ 作内积,并使用假设2可得

<y-y~,A(y-y~)>=h2<y-y~,F(y,u)-
 F(y~,u~)>≤-hc5‖y-y~‖2w +

 hc6‖y-y~‖w·‖u-u~‖w (37)

由于这里的矩阵A 是对角占优矩阵,且对角

线元素都是正数,所以对于任意非零向量z,有

zTAz≥0,故

 0≤-hc5‖y-y~‖2w +hc6‖y-y~‖w·‖u-u~‖w (38)

所以

‖y-y~‖w ≤
c6
c5
‖u-u~‖w (39)

引理2 设假设1以及假设2成立,对给定的

un ∈Kad,设pn 由式(16)~(18)生成,则pn 为有

界的.
证 将p与B(y,u)p作内积并利用假设1可得

  h<p,B(y,u)p>=hpTB(y,u)p

 =h∑
N

n=0
wnfy(xn,yn,un)p2

n ≤-c3h∑
N

n=0
wnp2

n

 =-c3‖p‖2w (40)

将p 与式(27)作内积可得

 0≤<p,Ap>=h2<p,B(y,u)p>+h2<p,D(y,u)>

≤-c3h‖p‖2w +h‖p‖w·‖E(y,u)‖w

(41)

式中,E(y,u)=[ly(x0,y0,u0),…,ly(xN,yN,

uN)]T,因此

‖p‖w ≤
1
c3
‖E(y,u)‖w (42)

将上式平方,并利用假设1中的ly(x,y,u)<c4,
可得

‖p‖2w ≤
1
c23
‖E(y,u)‖2w

 ≤
h
c23∑

N

n=0
wnly

2(xn,yn,un)

 ≤
hNc24
c23

=
(b-a)c24

c23
(43)

所以p 有界.
引理3 以下等式恒成立

  p0[(1+hα)z0-z1]+∑
N-1

n=1
pn(-zn-1+2zn -zn+1)+pN[-zN-1+(1-hβ)zN]

 =z0[(1+hα)p0-p1]+∑
N-1

n=1
zn(-pn-1+2pn -pn+1)+zN[-pN-1+(1-hβ)pN] (44)

证 

p0[(1+hα)z0-z1]+∑
N-1

n=1
pn(-zn-1+2zn -zn+1)+pN[-zN-1+(1-hβ)zN]

 =p0[(1+hα)z0-z1]+p1(-z0+2z1-z2)+p2(-z1+2z2-z3)+…+
pN-1(-zN-2+2zN-1-zN)+pN[-zN-1+(1-hβ)zN]

 =z0[(1+hα)p0-p1]+z1(-p0+2p1-p2)+z2(-p1+2p2-p3)+…+
zN-1(-pN-2+2pN-1-pN)+zN[-pN-1+(1-hβ)pN]

 =z0[(1+hα)p0-p1]+∑
N-1

n=1
zn(-pn-1+2pn -pn+1)+zN[-pN-1+(1-hβ)pN] (45)

  定理1 设 (yk,uk)和(yk+1,uk+1)由SQH方

法生成,uk 和uk+1是可测的,令假设1成立.则存在

一个与ε、k和uk 无关的常数θ>0,对于算法1当

前选择的ε>0,有
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JN(yk+1,uk+1)-JN(yk,uk)

 ≤-(ε-θ)‖uk+1-uk‖2w (46)

特别地,对于ε≥θ+η和τ=‖uk+1-uk‖2w,

有JN(yk+1,uk+1)-JN(yk,uk)≤-ητ.
证 由离散目标泛函的定义我们有

  JN(yk+1,uk+1)-JN(yk,uk)=h∑
N

n=0
wn[l(xn,yk+1

n ,uk+1
n )-l(xn,yk

n,uk
n)]=h∑

N

n=0
wn[H(xn,yk+1

n ,

 uk+1
n ,pk

n)-H(xn,yk
n,uk

n,pk
n)]-h∑

N

n=0
wn[pk

nf(xn,yk+1
n ,uk+1

n )-pk
nf(xn,yk

n,uk
n)] (47)

易知

JN(yk+1,uk+1)-JN(yk,uk)=h∑
N

n=0
wn[H(xn,yk+1

n ,uk+1
n ,pk

n)-H(xn,yk
n,uk+1

n ,pk
n)]+h∑

N

n=0
wn[H(xn,yk

n,

 uk+1
n ,pk

n)-H(xn,yk
n,uk

n,pk
n)]-h∑

N

n=0
wn[pk

nf(xn,yk+1
n ,uk+1

n )-pk
nf(xn,yk

n,uk
n)] (48)

对于式(48)中的第一项 H(xn,yk+1
n ,uk+1

n ,pk
n)-H(xn,yk

n,uk+1
n ,pk

n),我们有

H(xn,yk+1
n ,uk+1

n ,pk
n)-H(xn,yk

n,uk+1
n ,pk

n)=∫
1

0
Hy[xn,yk

n +s(yk+1
n -yk

n),uk+1
n ,pk

n](yk+1
n -yk

n)ds

 =∫
1

0
{Hy[xn,yk

n +s(yk+1
n -yk

n),uk+1
n ,pk

n]-Hy(xn,yk
n,uk

n,pk
n)}(yk+1

n -yk
n)ds+Hy(xn,yk

n,uk
n,

pk
n)(yk+1

n -yk
n)=∫

1

0
{fy[xn,yk

n +s(yk+1
n -yk

n),uk+1
n ]-fy(xn,yk

n,uk
n)}pk

n(yk+1
n -yk

n)ds+{ly[xn,

yk
n +s(yk+1

n -yk
n),uk+1

n ]-ly(xn,yk
n,uk

n)}(yk+1
n -yk

n)ds+Hy(xn,yk
n,uk

n,pk
n)(yk+1

n -yk
n)

 ≤∫
1

0
|fy[xn,yk

n +s(yk+1
n -yk

n),uk+1
n ]-fy(xn,yk

n,uk
n)|·|pk

n|·|yk+1
n -yk

n|ds+∫
1

0
|ly[xn,yk

n +

s(yk+1
n -yk

n),uk+1
n ]-ly(xn,yk

n,uk
n)|·|yk+1

n -yk
n|ds+Hy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n) (49)

这里第三个等号中我们使用了 Hy=fyp+ly.
由假设1中的Lipschitz条件,我们有:

H(xn,yk+1
n ,uk+1

n ,pk
n)-H(xn,yk

n,uk+1
n ,pk

n)≤∫
1

0
c1[|s(yk+1

n -yk
n)|+|uk+1

n -uk
n|]|pk

n|·|yk+1
n -

 yk
n|ds+∫

1

0
c2[|s(yk+1

n -yk
n)|+|uk+1

n -uk
n|]|yk+1

n -yk
n|ds+Hy(yk

n,uk
n,pk

n)(yk+1
n -yk

n)

 =|pk
n|·c1[

1
2
(yk+1

n -yk
n)2+|uk+1

n -uk
n|·|yk+1

n -yk
n|]+c2[

1
2
(yk+1

n -yk
n)2+|uk+1

n -uk
n|·

 |yk+1
n -yk

n|]+Hy(xn,yk
n,uk

n,pk
n)(yk+1

n -yk
n)≤

c7c1+c2
2

(yk+1
n -yk

n)2+(c7c1+c2)|uk+1
n -

 uk
n|·|yk+1

n -yk
n|+Hy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n) (50)

式(50)最后一个不等式利用了引理2,这里我们不妨设|pn|≤c7.同时我们有

h∑
N

n=0
wn[H(xn,yk+1

n ,uk+1
n ,pk

n)-H(xn,yk
n,uk+1

n ,pk
n)]≤

c7c1+c2
2 h∑

N

n=0
wn(yk+1

n -yk
n)2+(c7c1+

 c2)h∑
N

n=0
wn|uk+1

n -uk
n|·|yk+1

n -yk
n|+h∑

N

n=0
wnHy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n)

 ≤
c6(c7c1+c2)

2c5
h∑

N

n=0
wn(uk+1

n -uk
n)2+

2c6(c7c1+c2)
c5

h∑
N

n=0
wn(uk+1

n -uk
n)2+h∑

N

n=0
wnHy(xn,yk

n,uk
n,

pk
n)(yk+1

n -yk
n)=

5c6(c7c1+c2)
2c5

h∑
N

n=0
wn(uk+1

n -uk
n)2+h∑

N

n=0
wnHy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n)

 =
5c6(c7c1+c2)

2c5
‖uk+1-uk‖2w +h∑

N

n=0
wnHy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n) (51)

式(51)最后一个不等式利用了引理1和柯西-施瓦茨不等式.
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接下来,我们计算h∑
N

n=0
wnHy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n)的值

h∑
N

n=0
wnHy(xn,yk

n,uk
n,pk

n)(yk+1
n -yk

n)=h∑
N

n=0
wn[fy(xn,yk

n,uk
n)pk

n +ly(xn,yk
n,uk

n)]φn

 =
1
h
[(1+hα)pk

0-pk
1]φ0+∑

N-1

n=1

(-pk
n-1+2pk

n -pk
n+1)φn +[-pk

N-1+(1-hβ)pk
N]φN  

 =
1
h pk

0[(1+hα)φ0-φ1]+∑
N-1

n=1
pk

n(-φn-1+2φn -φn+1)+pk
N[-φN-1+(1-hβ)φN]  (52)

其中φn=yk+1
n -yk

n,n=0,1,…,N.式(52)第二个等式由式(29)~(31)得出且第三个等式由引理3得出.
由离散SQH算法,我们有

Hε(xn,yk
n,uk+1

n ,uk
n,pk

n)=min
u∈Kad

Hε(xn,yk
n,u,uk

n,pk
n) (53)

因此由式(48)的第二项,可得

h∑
N

n=0
wn[H(xn,yk

n,uk+1
n ,pk

n)-H(xn,yk
n,uk

n,pk
n)]

 =h∑
N

n=0
wn[Hε(xn,yk

n,uk+1
n ,uk

n,pk
n)-ε(uk+1

n -uk
n)2-Hε(xn,yk

n,uk
n,uk

n,pk
n)+ε(uk

n -uk
n)2]

 ≤h∑
N

n=0
wn[-ε(uk+1

n -uk
n)2]=-ε‖uk+1-uk‖2w (54)

由式(48)的第三项,可得

-h∑
N

n=0
wn[pk

nf(xn,yk+1
n ,uk+1

n )-pk
nf(xn,yk

n,uk
n)]=-

1
hpk

0{[(1+hα)yk+1
0 -yk+1

1 +hg1]-

 [(1+hα)yk
0-yk

1+hg1]}-
1
h∑

N-1

n=1
pk

n[(-yk+1
n-1+2yk+1

n -yk+1
n+1)-(-yk

n-1+2yk
n -yk

n+1)]-

 1hpk
N{[-yk+1

N-1+(1-hβ)yk+1
N -hg2]-[-yk

N-1+(1-hβ)yk
N -hg2]}

 =-
1
h
{pk

0[(1+hα)φ0-φ1]+∑
N-1

n=1
pk

n(-φn-1+2φn -φn+1)+pk
N[-φN-1+(1-hβ)φN]} (55)

所以

JN(yk+1,uk+1)-JN(yk,uk)≤
5c6(c7c1+c2)

2c5
‖uk+1-uk‖2w +

1
h
{pk

0[(1+hα)φ0-φ1]+

 ∑
N-1

n=1
pk

n(-φn-1+2φn -φn+1)+pk
N[-φN-1+(1-hβ)φN]}+(-ε)‖uk+1-uk‖2w -

 1h
{pk

0[(1+hα)φ0-φ1]+∑
N-1

n=1
pk

n(-φn-1+2φn -φn+1)+pk
N[-φN-1+(1-hβ)φN]}

 =
5c6(c7c1+c2)

2c5
‖uk+1-uk‖2w -ε‖uk+1-uk‖2w =-(ε-θ)‖uk+1-uk‖2w (56)

式中,θ=
5c6(c7c1+c2)

2c5
.从而

JN(yk+1,uk+1)-JN(yk,uk)

 ≤-(ε-θ)‖uk+1-uk‖2w (57)
定理2 设定理1的假设成立,如果在离散

SQH算法中的每次迭代时选择ε=θ+η,则
(a)序列{JN(yk,uk)}k=0,1,2,...是单调递减的,

并且收敛.
(b)lim

k→�
‖uk+1-uk‖2w =0.

证 证明(a)根据定理1,可得JN(yk+1,uk+1)

≤JN(yk,uk),所以序列 JN(yk,uk)  k=0,1,2,… 是

单调递减的.再由算法1第六步可知收敛.
为了证明(b),我们将式(46)重写为

‖uk+1-uk‖2w

 ≤
1
η
[JN(yk,uk)-JN(yk+1,uk+1)] (58)

上式关于k=0,1,…,K 求和可得
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∑
K

k=0
‖uk+1-uk‖2w ≤

1
η
[JN(y0,u0)-

 JN(yK+1,uK+1)] (59)

这 表 明 当 K → �时,具 有 正 元 素 的 级 数

∑
K

k=0
‖uk+1-uk‖2w 是收敛的,因此证明了(b).

4 数值实验

在本节中,我们从数值上研究离散SQH算法

的收敛性.我们采用 MATLAB软件进行数值计

算.离散SQH方法中的参数均设置为κ=10-8,σ=
1.2,ζ=0.9,η=10-5,ε=1且初始控制u0 取0.

考虑如下椭圆最优控制问题

minJ(y,u)=min∫
1

0
[1
2y

2(x)+
m1

2u2(x)+

 m2u(x)]dx

s.t.

-y″=-y+u,
 

u∈Kad

y'(0)=g1

y'(1)=g2

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (60)

这里我们取m1=10-3,m2=10-6,g1=g2=1,

Kad=[-1,1],h=1/800.
在图1中,我们展示了离散SQH方法得到的

最优控制u 及相应状态变量和控制变量随x 的变

化曲线.在图2中,我们展示了离散目标泛函JN

随SQH迭代的演化,可以看到离散目标泛函是单

调递减且收敛的,这验证了我们理论结果的正

确性.

图1 状态变量y、控制变量u 和伴随变量p 关于
自变量x 的变化曲线

Fig.1 The
 

curves
 

of
 

the
 

state
 

variable
 

y,
 

control
 

variable
 

u,
 

and
 

adjoint
 

variable
 

p
 

with
 

respect
 

to
 

the
 

independent
 

variable
 

x

图2 离散目标函数JN 随SQH迭代的演化

Fig.2 The
 

evolution
 

of
 

JN
 along

 

the
 

SQH
 

iterations

为了进一步验证该算法的有效性,我们接下来

考虑如下具有非光滑目标泛函和非线性微分方程

约束的最优控制问题

minJ(y,u)=min∫
1

0
{1
2
[y(x)-yd]2+

 
m3

2u2(x)+m4|u(x)|}dx

s.t.
-y″=-y3-y+u,

 

u∈Kad

y'(0)=g3

y'(1)=g4

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (61)

这里我们取m3=10-8,m4=10-6,g3=g4=
0,yd=0.8sin(πx),Kad=[-1,1],h=1/100.

在图3中,我们展示了离散SQH方法得到的最

优控制u及相应状态变量和控制变量随x 的变化曲

线.在图4中,我们展示了离散目标泛函JN 随SQH
迭代的演化,可以看到离散目标泛函是单调递减且

收敛的,这验证了我们理论结果的正确性.

图3 状态变量y、控制变量u 和伴随变量p 关于
自变量x 的变化曲线

Fig.3 The
 

curves
 

of
 

the
 

state
 

variable
 

y,
 

control
 

variable
 

u,
 

and
 

adjoint
 

variable
 

p
 

with
 

respect
 

to
 

the
 

independent
 

variable
 

x
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图4 离散目标函数JN 随SQH迭代的演化

Fig.4 The
 

evolution
 

of
 

JN
 along

 

the
 

SQH
 

iterations

为了验证离散SQH算法的效率,我们将其与

Adam优化算法[26]、自适应梯度下降法[27](adap-
tive

 

gradient
 

descent,
 

AdaGD)进行了数值比较.
这里我们考虑最优控制问题(60).图5展示了三种

优化算法在离散目标函数值JN 收敛过程中的表

现.可以发现,离散SQH 方法比 Adam 方法收敛

速度更快,SQH方法与Adam方法收敛速度相当.
表2对比了SQH算法、Adam算法以及AdaGD

算法在目标函数达到不同数值时CPU计算时间和

迭代次数,其中,Iter表示迭代次数.实验结果表明,

图4 离散目标函数JN 随SQH迭代的演化

Fig.4 The
 

evolution
 

of
 

JN
 along

 

the
 

SQH
 

iterations

图5 离散目标泛函JN 随迭代的演化

Fig.5 The
 

evolution
 

of
 

JN
 along

 

the
 

iterations

表2 SQH算法、Adam算法与AdaGD算法比较
(CPU单位:秒)

Table
 

2 Comparison
 

of
 

SQH,
 

Adam,
 

and
 

AdaGD
 

algorithms
 

(CPU
 

Unit:
 

seconds)

JN
SQH
CPU Iter Adam

CPU Iter AdaGD
CPU Iter

0.018 0.0057 25 0.0257 101 0.0085 38

0.020 0.0048 21 0.0195 85 0.0068 29

0.023 0.0041 18 0.0151 64 0.0042 18

0.026 0.0037 16 0.0107 46 0.0026 11

0.029 0.0028 12 0.0069 29 0.0015 6

0.032 0.0017 7 0.0034 14 0.0008 3

0.034 0.0007 2 0.0011 4 0.0005 2

在目标函数达到相同数值时SQH算法的CPU时

间相比Adam和AdaGD方法更少.

5 总结

本文针对一维椭圆最优控制问题,在“先离散

再优化”框架下,构造了一类基于中心差分格式的

离散序列二次哈密顿方法,并证明了该离散格式能

保持连续情形下序列二次哈密顿迭代的单调收敛

性.数值实验验证了理论分析的正确性.在后续研

究中,我们将考虑高维椭圆最优控制问题的离散序

列二次哈密顿方法.
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