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摘要 由于结构健康监测系统采集到的数据不可避免存在异常,导致无法从中获取结构真实健康情况,故

异常数据检测对结构分析及其状态评估至关重要.为此,提出一种基于组合预测模型的多通道数据异常检

测方法.首先,将结构健康监测数据分为两段,前段只有环境引起的间歇性异常,后段包括间歇性异常以及

传感器故障造成的数据异常.其次,通过根据余弦核密度估计各数据点的局部密度自适应地选取参数半径,

并对基于密度的空间聚类算法(DBSCAN)改进,进而用该改进模型剔除前段数据中的间歇性异常得到清洗

数据(即没有问题的正常数据).接着,基于多传感器间的相关性,结合卷积神经网络(CNN)的空间特征和长

短期记忆网络(LSTM)的时间特征,训练清洗数据得到代表正常数据特征的数学模型.然后,在数学模型中

输入后段数据得到预测数据,并将预测数据与后段数据对比得到预测误差,采用极值理论(EVT)拟合预测

误差分布并设置阈值,进而检测数据的异常状况.最后,分析Dowling
 

Hall人行天桥加速度监测数据表明,

该方法能够有效提高结构健康监测异常数据的检测能力.

关键词 深度学习, DBSCAN算法, 数据异常检测, 组合模型, 结构健康监测
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Abstract Due
 

to
 

the
 

inevitable
 

presence
 

of
 

anomalies
 

in
 

the
 

data
 

collected
 

by
 

the
 

structural
 

health
 

moni-
toring

 

system,
 

it
 

is
 

impossible
 

to
 

obtain
 

the
 

true
 

health
 

status
 

of
 

the
 

structure.
 

Therefore,
 

anomaly
 

data
 

detection
 

is
 

crucial
 

for
 

structural
 

analysis
 

and
 

state
 

evaluation.
 

A
 

multi-channel
 

data
 

anomaly
 

detection
 

method
 

based
 

on
 

a
 

combination
 

prediction
 

model
 

is
 

proposed.
 

Firstly,
 

the
 

structural
 

health
 

monitoring
 

data
 

is
 

divided
 

into
 

two
 

sections.
 

The
 

first
 

section
 

only
 

includes
 

intermittent
 

anomalies
 

caused
 

by
 

the
 

en-
vironment,

 

while
 

the
 

second
 

section
 

includes
 

intermittent
 

anomalies
 

and
 

data
 

anomalies
 

caused
 

by
 

sensor
 

failures.
 

Secondly,
 

by
 

estimating
 

the
 

local
 

density
 

of
 

each
 

data
 

point
 

based
 

on
 

cosine
 

kernel
 

density
 

and
 

adaptively
 

selecting
 

parameter
 

radii,
 

and
 

improving
 

the
 

density
 

based
 

spatial
 

clustering
 

of
 

applications
 

with
 

noise
 

(DBSCAN)
 

algorithm,
 

the
 

improved
 

model
 

is
 

used
 

to
 

remove
 

intermittent
 

anomalies
 

in
 

the
 

previous
 

data
 

and
 

obtain
 

clean
 

data
 

(i.e.,
 

normal
 

data
 

without
 

problems).
 

Next,
 

based
 

on
 

the
 

correla-
tion

 

between
 

multiple
 

sensors,
 

combined
 

with
 

the
 

spatial
 

features
 

of
 

convolutional
 

neural
 

networks
 

(CNN)
 

and
 

the
 

temporal
 

features
 

of
 

long
 

short
 

term
 

memory
 

networks
 

(LSTM),
 

a
 

mathematical
 

model
 

representing
 

normal
 

data
 

features
 

is
 

trained
 

to
 

clean
 

the
 

data.
 

Then,
 

the
 

predicted
 

data
 

is
 

obtained
 

by
 

in-
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putting
 

the
 

later
 

stage
 

data
 

into
 

the
 

mathematical
 

model,
 

and
 

the
 

predicted
 

data
 

is
 

compared
 

with
 

the
 

lat-
er

 

stage
 

data
 

to
 

obtain
 

the
 

prediction
 

error.
 

The
 

extreme
 

value
 

theory
 

(EVT)
 

algorithm
 

is
 

used
 

to
 

fit
 

the
 

distribution
 

of
 

the
 

prediction
 

error
 

and
 

set
 

a
 

threshold
 

to
 

detect
 

abnormal
 

conditions
 

in
 

the
 

data.
 

Finally,
 

analyzing
 

the
 

acceleration
 

monitoring
 

data
 

of
 

Dowling
 

Hall
 

pedestrian
 

overpass
 

shows
 

that
 

this
 

method
 

can
 

effectively
 

improve
 

the
 

detection
 

ability
 

of
 

abnormal
 

data
 

in
 

structural
 

health
 

monitoring.

Key
 

words deep
 

learning, DBSCAN
 

algorithm, data
 

anomaly
 

detection, combined
 

model, struc-
tural

 

health
 

monitoring

引言
  

我国现有在役桥梁近90万座,利用桥梁健康

监测系统采集的数据对桥梁结构健康状况进行评

估,为桥梁运营维护部门提供维修、管理决策依据

具有重要的现实意义[1].近年来,我国大跨桥梁安

全事故发生次数逐年减少,主要得益于为这些桥梁

安装的较为完善的健康监测系统[2],对桥梁在役期

间进行了全周期、多方面、多种类的结构健康监测,

并据此对桥梁结构进行日常养护等[3].然而,数据

采集、传输和存储的每个环节都可能存在导致结构

健康监测数据异常的因素[4],从而导致系统采集到

的数据出现缺失、漂移等异常,进而无法正确判断

桥梁结构损伤情况[5],故对异常 数 据 检 测 势 在

必行[6].
  

随着人工智能技术的发展,深度学习技术逐渐

应用于健康监测数据处理领域[7].Smarsly等[8]在

SHM系统的无线传感器节点中嵌入了一个多层预

训练人工神经网络(ANN),自主检测和隔离漂移

和偏置故障.Fu等[9]设计的人工神经网络能检测

出峰值、漂移、偏置三种异常数据,在珍岛大桥数据

应用中验证了该方法的有效性和精度.Bao等[10]提

出了一种基于计算机视觉和深度学习技术的自动异

常检测深度神经网络,将一维原始时间序列信号分

段转换为二维灰度图像,并对每张图像进行手工标

注.该方法在实桥中检测异常数据准确率达87%.
在实际工程中,多种传感器相互关联,仅用单

一特征检测异常状况难以奏效.由于多变量时间序

列中异常样本与正常样本在空间特征上存在明显

差异,需考虑多个空间特征的相关性.传统方法使

用小部分数据应用于大数据时性能提升往往有限.
此外,研究发现,普遍用于模型训练的类不平衡数

据集会对数据异常检测的准确性产生负面影响.
为解决上述问题,本文提出一种基于无监督组

合预测模型的异常检测框架,可减少类不平衡数据

集带来的精度下降、计算复杂等负面影响.

1 自适应参数的DBSCAN聚类模型

1.1 DBSCAN算法
   

DBSCAN(density-based
 

spatial
 

clustering
 

of
 

applications
 

with
 

noise)是一种基于密度的空间聚

类算法,由Ester等[11]在1996年提出.该算法将具

有足够高密度的区域划分为簇,并能在带有噪声的

空间数据库中发现任意形状的聚类.
  

DBSCAN算法的核心思想是:对于给定的数

据集,算法首先找到核心对象,即在给定半径ε内

包含不少于最小数量点的点.然后,算法从这些核

心对象出发,通过密度可达性关系,将紧密相连的

核心对象归为同一簇.对于那些不是核心对象的

点,如果它们位于核心对象的邻域内,则也被分配

到相应的簇中.不属于任何簇的点被视为噪声.

图1 DBSCAN核心节点邻域示意图

Fig.1 Schematic
 

of
 

the
 

neighborhood
 

of
 

DBSCAN
 

core
 

nodes

定义1 (R-邻域半径)对xj∈D,R-邻域

包含样本集D 中与xj 之间的距离小于等于R 的样

本,即:

NR(xj)={xi ∈ dist(xi,xj)≤R} (1)

定义2 (核心对象)如果xi 的R-领域至少

包含 MinPts个样本,xj 是一个核心对象,即:

NR(xj)≥ MinPts (2)
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定义3 (密度直达)如果xj 在xi 的R-邻域

中,并且xi 是核心对象,称xj 由xi 直接密度可达.
定义4 (密度可达)对于xi 和xj,如果存在一

个序列p1,p2,…,pn,其中p1=xi,pn=xj 并且

pn+1 由pi 直接密度可达,称xj 由xi 密度可达.
定义5 (密度相连)对于xi 和xj,如果存在

xk 使xi 和xj 均由xk 密度可达,则称xi 和xj 密

度相连.

1.2 DBSCAN算法的改进—自适应参数的DBSCAN
算法

  

通过核概率密度函数进行估算得到数据集中

每个样本点的核概率密度[12].研究表明,样本点密

度越大,越有可能是一个聚类的中心,并且在该点

邻域搜索半径(Eps)越大,同一聚类中的点可以尽

可能多地聚为同一簇.当样本点的密度较小时,该
点可能是簇的边缘点或离散点,设置较小的Eps可

以降低对其他簇的影响[13].由于核密度估计不依赖

于数据集分布的先验知识,因此可以利用概率密度

估计值作为每个点设置Eps的参考,然后进行聚类.
定义6 (核密度估计)假设独立分布F 包含

x1,x2,…,xn 个样本点,概率密度函数为f,核密

度估计如式(3):

 f
^

h(x)=
1
n∑

n

i=1
Kh(x-xi)=

1
nh∑

n

i=1
K

x-xi

h  
(3)

其中,h 表示带宽,K(x)表示核函数,同时 K(x)
满足以下条件:

K(x)≥0, ∫K(x)dx=1

∫xK(x)dx=0, ∫x2K(x)dx>0 (4)

定义7 (核函数)核函数是从输入空间到特

征空间存在映射关系的内积.
  

在计算样本局部密度时,不同数据集样本点局

部密度差异较大,如图2所示.基于欧氏距离计算

的局部密度难以准确刻画其分布.基于高斯核函数

计算局部密度时,因考虑全局信息而增加了计算复

杂度.高斯核函数曲线也直观地反映了其需要全部

数据信息的特点,如图3所示.对比余弦核函数曲

线,如图4,它仅使用样本点局部邻域内的信息,避
免了对全局数据的依赖,大幅降低了计算复杂度,

使得算法能够高效运行,并能准确描述局部密度的

分布.余弦核函数见公式(5).图3和图4中,横轴

可代表两个样本间的距离,纵轴为核函数值.可观

察到,在有效作用范围内,核函数值与间距呈负相

关,当距离近时核函数值高,即相似性高的现象.

图2 两个数据集的样本分布示意图

Fig.2 Sample
 

distribution
 

of
 

the
 

two
 

datasets

图3 高斯核函数

Fig.3 Gaussian
 

kernel
 

function

图4 余弦核函数

Fig.4 Cosine
 

kernel
 

function

K(x)=
π
4cos

π
2x
, x∈ -1,1  

0, 其他

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (5)

  

在x 定义域内,两点间距离小于带宽h 时,样
本间互有影响,通过公式(5)采集局部信息定义样

本局部密度,可以凸显相同截断距离内的点的位置

差异;同时平衡了类簇的中心点和边界点对样本局

部密度的影响.
  

由公式(3)~(5)得到数据每个样本点的概率
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密度,概率密度的定义认为高密度区域设定较大的

ε值捕获更大范围的结构信息;低密度区域设定较

小的ε值以避免将噪声或远离的点错误地归入某

簇.具体步骤如下:
(1)计算余弦核密度估计值.计算数据集中每

个点的余弦核密度估计值.此值将用于后续确定每

个点的ε.
(2)确定ε的基准值和变化范围.用整体中位

数作为ε的基准值,即εbase,它反映整个数据集密

度状态的平均水平.
(3)为每个点定制ε1.对于每个点i,基于其余

弦核密度估计值Di 相对于最大密度Dmax 和最小

密度Dmin 的位置,自适应调整εi:

εi=εbase× 0.5+
Di-Dmin

Dmax-Dmin  (6)
  

εi 的变化范围为(0.5,1.5)εbase.这样确保了εi 值

会根据点的密度值在制定的范围内自适应调整.
(4)确定样本数目 MinPts.基于整体数据的特

性和经验规则来确定,根据文献[14]可得 MinPts=
2×dim.

(5)应用于DBSCAN.将上述步骤自适应确定

的参数应用于DBSCAN算法.每个点将根据其特

有的ε值来判定邻域内的点,从而实现对密度不均

匀数据的更好聚类.

2 基于深度学习的数据异常检测模型

2.1 CNN-LSTM 预测模型
  

在结构健康监测中,CNN-LSTM 组合模型可

充分利用不同传感器数据的空间关联特征和历史

数据的时序演化规律,同时考虑传感器间的相互影

响以及变化趋势,从而实现对目标传感器的监测预

测,为健康状态评估提供可靠依据.
根据 CNN 和 LSTM 的 特 点,建 立 了 基 于

CNN-LSTM的数据预测模型.模型结构图如图5
所示,主要结构为CNN和LSTM,包括输入层、一
维卷积层、池化层、LSTM隐藏层、全连接层.

基于CNN-LSTM 进行桥梁振动数据预测的

整体流程可以概括为如下关键步骤:
  

(1)数据预处理.剔除原始数据中间歇性异常,

并归一化处理.
  

(2)选择滑动窗口宽度.通过不断调参选择合

适的宽度.
  

(3)构造CNN-LSTM 模型.选择合适的网络

层、激活函数、优化器等,并调整学习率、批量大小

等初始参数以提高模型性能.
  

(4)数据集划分与训练.将数据集划分为训练

集和预测集,训练时持续更新相关参数,直到模型

预测准确度满足要求.
  

(5)预测并计算结果.将测试集输入到训练好

的模型,得到预测结果,作为数据异常预警的依据.

图5 CNN-LSTM结构图

Fig.5 CNN-LSTM
 

structure
 

diagram

2.2 基于EVT的阈值动态控制
  

基于极值理论(extreme
 

value
 

theory,
 

EVT)

的阈值动态控制主要是在处理极端数据、高维数据

分析、风险管理等领域中的一个重要应用.极值理

论是统计学中用于研究和建模随机变量极端偏离

其平均水平值行为的理论.在金融、气候研究、网络

安全等领域,对极端事件的预测和管理至关重要.
基于EVT的阈值动态控制策略,就是通过极值理

论模型来动态确定数据处理或风险管理中的阈值,

从而有效地预警和管控潜在的极端风险.与传统阈

值方法相比,该方法能适应数据的非平稳性,提高

异常检测的灵敏度和准确性,在结构健康监测中具

有重要应用价值.
  

极值理论中最常用的两个分布是广义极值

(generalized
 

extreme
 

value,GEV)分布和广义帕

累托分布(generalized
 

pareto
 

distribution,GPD).
GEV 用于建模一系列数据中的最大值(或最小

值),而GPD用于对超过某一阈值的数据进行建

模.EVT的核心在于使用合适的模型来描述并预

测极端事件的行为,特别是在超出历史数据范围的
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情况下.将预测误差作为输入,来进行数据的异常

检测.步骤如下:
  

(1)确定异常阈值.将阈值u 设为预测误差的

95%分位数.估计 GPD参数,计算90%置信水平

下的异常阈值q.
  

(2)异常检测.对新数据,用模型预测并计算预

测误差e.若e>q,发出异常警报;否则视为正常.
  

(3)更新模型和阈值.定期将新数据加入训练

集,重新训练模型.更新预测误差、GPD参数和异

常阈值q.

2.3 异常检测评估指标
  

基于解混淆矩阵,传感器异常数据检测评估指

标主要有4种,分别为准确率(A)、精确率(P)、召
回率(R)和F1 分数(F1-Score),如下:

A=
TP+TN

TP+FP+FN+TN
(7)

P=
TP

TP+FP
(8)

R=
TP

TP+FN
(9)

F1-Score=
2PR
P+R

(10)
  

其中,将异常数据定义为正类,正常数据定义为负

类.TP 为预测是异常数据实际上也是异常数据的

数据量;TN 为预测是正常数据实际上也是正常数

据的数据量;FP 为预测是异常数据实际上是正常

数据的数据量;FN 为预测是正常数据实际上是异

常数据的数据量.

3 结构健康监测数据异常检测流程
  

在结构健康监测系统中,数据的采集、传输、存
储往往存在导致数据发生异常的因素,进而影响后

续对工程结构的分析和对结构状态的评估.基于无

监督提出一种综合改进后密度聚类与深度学习的

数据异常检测流程,为桥梁的准确预警提供科学依

据.具体步骤如下:
  

(1)对安装有健康监测系统的桥梁进行数据

采集;
  

(2)用改进后自适应参数DBSCAN聚类模型

对正常数据进行清洗;
  

(3)把清洗后的监测数据用于CNN-LSTM 模

型训练,得到桥梁正常状态下的预测模型;
  

(4)对预测结果进行分析,将预测误差用于基

于极值理论的阈值动态控制得到阈值,进而检测数

据的异常状况;
  

(5)结合评价指标确定异常检测效果.

4 案例分析

实验数据采用Dowling
 

Hall人行天桥健康监测

(https://engineering.tufts.edu/cee/shm/research/

continuous-monitoring-dowling-hall-footbridge)加
速度数据训练集,其位于塔夫茨校区,用于结构健

康监测相关研究与教学,8个加速度传感器的布置

如图6所示.该桥前三阶频率分别为4.63
 

Hz、

6.07
 

Hz及7.07
 

Hz.

图6 Dowling
 

Hall人行天桥加速度传感器布置方案

Fig.6 Sensor
 

placement
 

of
 

Dowling
 

Hall
 

Pedestrian
 

Bridge

4.1 异常数据模拟及数据集制作
  

在实桥监测过程中,异常工况发生的概率较

低,传感器收集的异常数据样本有限,且异常数据

成因复杂,数据异常类型难以准确定义.为了全面

评估异常检测算法的性能,使用数学模型模拟各种

可能的异常情况,构建丰富的异常数据集.参考已

有数学模型[15,16],对某时间序列监测数据x(t)=
(x1,x2,…,xn),主要考虑的数据异常类型及其数

学模型如表1所示.

表1 数据异常数学模型
Table

 

1 Mathematical
 

models
 

for
 

data
 

anomalies

异常类型 数学表达

跳点 xi<[xmin]或xi>[xmax]

增益 x(t)=G[x0(t)+ω(t)]

线性偏移 x(t)=x0(t)+k·t+b+ω(t)

精度下降 x(t)=x0(t)+θ(t)

丢失 x(t)=0

4.1.1 数据集制作总体流程
  

采用Dowling
 

Hall人行天桥健康监测数据构

造数据集的总体流程如下:
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(1)基于原始数据,采用移动窗口截取数据集,

设置滑动窗口移动步长为1024.其中,前14周的数

据构造初始训练集,后3周的数据构造初始测试集;
(2)计算初始训练集的均值和方差,并利用Z-

score方法对初始训练集和初始测试集归一化处理;
(3)对初始训练集和初始测试集的数据进行随

机采样,得到训练集和测试集;
  

(4)对测试集,采用表1中的数学模型,模拟响

应输入数据.
4.1.2 异常数据模拟结果

  

对于数据跳点,基于每个数据段的振幅来引入

数据跳点噪声.在每个长度为1024的数据段上,随
机选择3到7个数据点,并为这些点引入随机噪

声,设置为振幅的1.5到8倍,如图7所示.
  

对于数据增益,主要考虑了:整体缩小、局部缩

小两种增益情况.前者随机生成0.02到0.3倍的

增益系数;后者随机选择0.2到0.9倍数据段长度

的数据进行增益,如图8所示.
将线性偏移中的趋势项和数据漂移分开模拟,

如图9所示.趋势项往往包含较长周期的干扰,因
此模拟“趋势项”除了考虑表1中的线性偏移项,额
外加入了周期性的正弦函数,具体如下:将1024长

度的数据段随机分段(1段到4段),并在每段分段

上添加幅值在0.3到2.5倍振幅的线性高差(递
增、递减和随机正负号组成的四种情况);在每段分

段上进一步叠加随机周期、随机初始相位、随机幅

值的正弦函数,其中周期范围在0.5π到2.5π之

间,随机初始相位在0到2π之间,随机幅值在0.3
到2.5倍的振幅之间.

  

数据漂移不同于数据趋势项,是监测数据的某

一段均值突然增大然后迅速回归到正常数据的情

况.具体步骤如下:确定漂移类型后随机选取0.1
到0.4倍数据长度的数据段,并生成0.5到2.5倍

的振幅的峰值点高度;随机确定局部“趋势项”的拟

合函数次数,并将其叠加到原始数据上.
 

原始信号中已经包含有噪声,所以在以上几种

异常数据模拟中均没有再次添加随机噪声.对于精

度下降情况,通过在原始信号中添加随机信噪比

(SNR)在-5到0之间的噪声来模拟,如图10所示.
对于数据丢失,设置信号丢失率在0.3到0.8

之间,并分为连续整段数据丢失和离散点式数据丢

失两种情况模拟,如图11所示.

图7 跳点异常模拟

Fig.7 Jump
 

point
 

anomaly
 

simulation

图8 数据增益模拟

Fig.8 Data
 

gain
 

simulation

图9 线性偏移异常模拟

Fig.9 Linear
 

offset
 

anomaly
 

simulation

图10 精度下降模拟

Fig.10 Accuracy
 

drop
 

simulation
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图11 数据丢失模拟

Fig.11 Data
 

loss
 

simulation

4.2 基于自适应参数DBSCAN算法的数据异常

检测

  

选取该桥2010年1月5日19:00~20:00的

监测数据,为了对比DBSCAN改进效果,分别采用

改进前后的DBSCAN方法对异常数据进行识别,

结果见图12、图13和表2.结果表明,改进后的自

适应参数DBSCAN算法能够更准确地识别出离群

点.从表2可以看出,改进的DBSCAN算法在异常

检测的准确率、精确率和召回率均高于传统 DB-
SCAN算法.原因是传统DBSCAN算法中相关参

数受人工选取的限制,在面对不均匀数据样本时,

易把离群点错误地归入正常数据簇中,导致错检和

漏检,降低了异常识别的精度.改进后的自适应参

图12 基于DBSCAN算法的异常检测

Fig.12 Anomaly
 

detection
 

based
 

on
 

DBSCAN
 

algorithm

图13 基于自适应参数DBSCAN算法的异常检测

Fig.13 Anomaly
 

detection
 

based
 

on
 

adaptive
 

parametric
 

DBSCAN
 

algorithm

表2 传感器异常数据检测方法评估

Table
 

2 Evaluation
 

of
 

sensor
 

anomaly
 

data
 

detection
 

methods

评估指标 DBSCAN算法 自适应DBSCAN算法

准确率(A) 0.897 0.941

精确率(P) 0.785 0.863

召回率(R) 0.744 0.859

F1-分数(F1-Score) 0.764 0.861

运算时间/s 145 139

数DBSCAN算法能够根据局部密度的变化自适应

调整半径参数,加快聚类速度并提高识别精度.

4.3 基于组合预测模型的数据异常检测

4.3.1 数据相关性分析
  

桥梁健康监测系统中,多种类型的传感器分布

在结构的不同测点中,通过获取桥梁结构响应数据

为状态评估提供支持.因此,分析传感器在不同测

点间的关联性十分重要.
  

图14展示了数据集中传感器s1和s2的部分

加速度数据随时间变化情况.可看出,安装在同一

纵梁的相邻传感器响应数据在峰值处存在部分偏

差,但总体变化趋势基本一致.为验证不同测点响

应之间的相关性,计算了测点s1~s8加速度监测

数据的相关系数,系数越大,相关性越强.

图14 相邻传感器加速度数据随时间变化图

Fig.14 Plot
 

of
 

acceleration
 

data
 

versus
 

time
 

between
 

neighboring
 

sensors
  

使用式(11)计算灰色关联系数:

ζi(k)=
Δ(min)+ρΔ(max)

x0(k)-xi(k)+ρΔ(max)
(11)

  

ρ一般取值为0.5,其中Δ(min)和Δ(max)分

别是其他传感器数据与待检测传感器绝对差值的

最小值和最大值.
  

对i个时刻的关联系数求和,再取其均值,可
得最终的灰色关联度,即:

Ri=∑
k

n=1
ζi(n) (12)

  

选用灰色关联度作为评价数据相关性的评价

指标,尽管皮尔逊相关系数可反映两个测点的相关

性,但对于时滞数据可能产生不准确结果.时滞数

据是指时程曲线形态相似,但各时刻数据并不对
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应,可能由传感器所测结构响应存在时间延迟所

致.相比之下,灰色关联度对存在一定时滞性的时

间序列具有更好的鲁棒性,故应用灰色关联度更具

有适用性.具体的相关系数如表3所示.
  

表3 相关系数表

Table
 

3 Correlation
 

coefficient
 

table

传感器 s1 s2 s3 s4 s5 s6 s7 s8

s1 1.0000.8120.7860.7520.7930.7490.7310.715

s2 0.8121.0000.8270.8050.8140.8380.7610.686

s3 0.7860.8271.0000.7740.7080.7210.7400.733

s4 0.7520.8050.7741.0000.6530.6890.7270.806

s5 0.7930.8140.7080.6531.0000.8360.8090.728

s6 0.7490.8380.7210.6890.8361.0000.8570.763

s7 0.7310.7610.7400.7270.8090.8571.0000.748

s8 0.7150.6860.7330.8060.7280.7630.7481.000

相关系数绝对值越大代表相关性越强;反之则

相关性越弱.当两个应变测点监测数据的相关系数

大于0.700时,说明它们具有强相关性.由表3可

知,传感器s1与其余传感器间的相关系数均大于

0.700,保持强相关性.因此,可将加速度传感器

s2~s8的输出数据作为输入,共同参与对加速度传

感器s1的预测.
4.3.2 训练过程

  

本文基于Pytorch框架完成模型的搭建和训

练,硬件配置CPU为Intel(R)
 

i5-8500K、RAM 为

32
 

GB、显卡为NVIDIA
 

GTX
 

1060.采用Adam算

法更新网络参数,设置批尺寸为64,设置学习率为

0.0001,设置损失函数为平均绝对误差,设置迭代

次数为100个循环(epoch).
  

对CNN-LSTM 神经网络预测模型的超参数

进行合理设置,可提高模型的预测准确性.常见的

模型参数设置方法有试验法、交叉验证法、网格搜

索法、遗传算法等.对CNN-LSTM 模型的超参数

选择需采用分层优化策略:
  

(1)人工预设参数.针对桥梁监测数据的时间

序列属性,采用一维CNN(滤波器32)提取时序数

据局部特征,单层LSTM(隐藏单元64)建模时序

依赖,避免深层网络对低频振动信号的过拟合.
  

(2)自动优化参数.通过网格搜索联合K折交

叉验证(K=5)对可调参数进行寻优,覆盖学习率

(1×10-4~1×10-2)、批处理量(32~256)、卷积滤

波器数量(32~128)等.
  

经网格搜索和 K折交叉验证以及人为调整

后,确定的网络模型超参数选择如表4所示.其中

对其余所提模型均进行了统一的超参数优化流程,

包括训练集划分比例、评估指标均保持一致等.模
型训练过程如图15所示,训练收敛且没有出现过

拟合现象.在训练初始阶段,训练损失和测试损失

均呈现明显的下降趋势.在训练30个循环之后网

络性能的提升逐渐放缓,并在第96个循环得到最

优的测试结果.根据分布直方图将预测误差可视

化,为模型性能提供了重要定量和定性分析依据.
通过直观观察误差的分布情况,可以评估模型是否

具有良好的预测能力,并对其在不同数据集上的适

用性进行进一步的优化和调整.如图16所示,

CNN-LSTM模型的预测误差接近正态分布,具有

较好的预测性能.

图15 训练过程

Fig.15 Training
 

process

图16 预测误差分布直方图

Fig.16 Histogram
 

of
 

prediction
 

error
 

distribution

表4 网络结构参数
Table

 

4 Network
 

architecture
 

parameters

参数 选择

卷积层滤波器 32

卷积层核大小 1
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卷积层激活函数 Tanh

池化层大小 1

池化层激活函数 Relu

续表4

参数 选择

LSTM层的隐藏单元数 64

LSTM层激活函数 Tanh

批处理大小 64

学习率 0.001

优化器 Adam

损失函数 平均绝对误差

4.3.3 数据预测对比结果分析
  

为验证自适应DBSCAN-CNN-LSTM 组合模

型的适用性,将自适应 DBSCAN-CNN-LSTM 组

合模型预测结果与 LSTM 模型、CNN-LSTM 模

型、RNN模型在相同的训练数据集和实验数据集

下进行预测结果对比实验.为了更加清晰地显示模

型预测效果,选取部分测试数据集进行训练效果展

示,如图17所示.

图17 不同模型预测效果图

Fig.17 Effect
 

of
 

different
 

model
 

predictions
  

为更直观地表现出模型预测性能的优劣,通过

调研时间序列预测文献选取模型评价指标[17,18],

最终选择模型预测性能的评价指标为平均绝对误

(mean
 

absolute
 

error,
 

MAE)和均方根误差(root
 

mean
 

square
 

error,
 

RMSE),计算公式如式(13)和
式(14)所示.

EMAE=
1
N∑

N

i=1
Xpred(i)-Xact(i) (13)

ERMSE=
1
N∑

N

i=1

[Xact(i)-Xpred(i)]
2 (14)

  

其中,N 表示预测序列的长度,Xpred 和Xact分别表

示模型的预测值和实际值,RMSE反映预测值与实

际值的平均偏差,其取值一般大于等于0,且越接

近0说明模型预测精度越高;MAE的取值同样是

越接近0说明模型预测性能越好[19].对比结果如

图18所示.可知相比于其余模 型,自 适 应 DB-
SCAN-CNN-LSTM 组合模型能够有效提高预测

精度,不论在 MAE还是 RMSE上都低于其余模

型,由此表明该方法在桥梁监测系统中的时间序列

数据预测方面更有优势.

图18 不同模型预测结果对比

Fig.18 Comparison
 

of
 

different
 

model
 

prediction
 

results

4.3.4 数据异常检测结果
  

通过计算得知预测误差,将预测误差的95%
中位数设为阈值u,超过其部分的样本用来估计

GPD参数,并计算90%置信水平下的异常阈值.随
着样本的逐渐输入,定期更新训练集以及模型参

数,可实现对数据的实时动态监测,如图19所示.

图19 数据的动态阈值控制图

Fig.19 Dynamic
 

threshold
 

control
 

charts
 

for
 

data
  

从表5可知,自适应 DBSCAN-CNN-LSTM
组合模型算法在五种数据异常检测中整体检测准

确率、精确率、召回率和 F1 分 数 均 优 于 CNN-
LSTM、LSTM 和 RNN方法,是因为该算法将聚

类和深度学习相结合,提高了异常检测的准确性和

模型的泛化能力,使其不局限于单一异常类型,在
发生多种异常下保持对其准确有效的识别能力,但
也使其预测耗时略长于单独使用LSTM 或RNN
模型.RNN和LSTM模型在整体异常识别效果上
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差异不大,是由于LSTM在处理大量数据中,易遗

忘前面部分的数据特征,导致预测精度随着数据的

持续输入而逐渐降低,进而影响阈值的计算,最终

导致数据异常检测精度下降.
表5 整体传感器异常数据检测方法评估

Table
 

5 Evaluation
 

of
 

overall
 

sensor
 

anomaly
 

data
 

detection
 

methods

模型选择
评估指标

准确率(A) 精确率(P) 召回率(R) F1 分数(F1-Score) 预测耗时/s

自适应DBSCAN-CNN-LSTM 0.973 0.935 0.921 0.927 258

CNN-LSTM 0.948 0.919 0.885 0.902 279

LSTM 0.894 0.825 0.816 0.820 245

RNN 0.906 0.821 0.797 0.809 239

5 结论
  

桥梁健康监测异常数据成因复杂,具有体量

大、随机性、间歇性等特点.对不同类型的异常数据

进行识别,能够保障桥梁结构的安全性与可用性.
本文提出一种基于自适应DBSCAN-CNN-LSTM
组合预测模型的桥梁健康监测数据异常检测方法,
并利用公开的Dowling

 

Hall加速度监测数据验证

该方法的有效性.主要结论如下:
  

(1)所提出的组合模型能够高效、准确地识别

出由传感器故障所造成的数据异常,为桥梁实时预

警提供了可靠的保障.
  

(2)改进的DBSCAN密度聚类异常检测方法

是以核密度估计理论为基础,无需获知数据分布的

先验以及全局信息.其参数的自适应选取也避免了

人工选取的局限性.
  

(3)提出的方法采用无监督学习方式,通过对

结构健康状态下的数据建模,避免了训练集类不平

衡问题,提高异常数据检测的效率.
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