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Combining Deep Learning with Improved DBSCAN Clustering for

Data Anomaly Detection”

Wang Dian  Chang Jun'
(School of Civil Engineering. Suzhou University of Science and Technology, Suzhou 215011, China)

Abstract Due to the inevitable presence of anomalies in the data collected by the structural health moni-
toring system, it is impossible to obtain the true health status of the structure. Therefore, anomaly data
detection is crucial for structural analysis and state evaluation. A multi-channel data anomaly detection
method based on a combination prediction model is proposed. Firstly, the structural health monitoring
data is divided into two sections. The first section only includes intermittent anomalies caused by the en-
vironment, while the second section includes intermittent anomalies and data anomalies caused by sensor
failures. Secondly, by estimating the local density of each data point based on cosine kernel density and
adaptively selecting parameter radii, and improving the density based spatial clustering of applications
with noise (DBSCAN) algorithm, the improved model is used to remove intermittent anomalies in the
previous data and obtain clean data (i. e. , normal data without problems). Next, based on the correla-
tion between multiple sensors, combined with the spatial features of convolutional neural networks
(CNN) and the temporal features of long short term memory networks (LSTM), a mathematical model

representing normal data features is trained to clean the data. Then, the predicted data is obtained by in-
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putting the later stage data into the mathematical model, and the predicted data is compared with the lat-

er stage data to obtain the prediction error. The extreme value theory (EVT) algorithm is used to fit the

distribution of the prediction error and set a threshold to detect abnormal conditions in the data. Finally,

analyzing the acceleration monitoring data of Dowling Hall pedestrian overpass shows that this method

can effectively improve the detection ability of abnormal data in structural health monitoring.

DBSCAN algorithm,

tural health monitoring
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Table 3 Correlation coefficient table

323 sl s2 s3 s4 s5 s6 s7 s8

sl

—_

.000 0.812 0.786 0.752 0.793 0.749 0.731 0.715
s2 0.812 1.000 0.827 0.805 0.814 0.838 0.761 0.686
s3 0.786 0.827 1.000 0.774 0.708 0.721 0.740 0.733
s4 0.752 0.805 0.774 1.000 0.653 0.689 0.727 0.806
s5 0.793 0.814 0.708 0.653 1.000 0.836 0.809 0.728
s6 0.749 0.838 0.721 0.689 0.836 1.000 0.857 0.763
s7 0.731 0.761 0.740 0.727 0.809 0.857 1.000 0.748

s8 0.715 0.686 0.733 0.806 0.728 0.763 0.748 1.000
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Table 5 Evaluation of overall sensor anomaly data detection methods
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LSTM 0. 894 0. 825 0. 816 0. 820 245
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