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Research on the Service Performance of the Virtual Rail Train-Road

Vertical Coupling System "

Zhou Shuai  Yang Caijin' Xu Jing Zhang Weihua
(State Key Laboratory of Rail Transit Vehicle System. Southwest Jiaotong University, Chengdu 610031, China)

Abstract Different from the traditional rail trains, the virtual rail trains (VRT) run on the existing
roads of the city, and have been put into use in public transportation systems of many cities at home and
abroad in recent years because of their higher carrying capacity compared with conventional buses.
However, due to the fact that the VRT has the long body and heavy axle weight, and always tracks a-
long local constant areas of the road in the long term, the road is prone to deformation and damage under
the vehicle road, which in turn affects the quality of train operation and road dynamic performance. Ai-
ming at actual service problems of the VRT, the current research carries out the vertical coupling dy-
namic analysis of the train-road system and reveals the influence of the train and road characteristic pa-
rameters on the service performance of the coupling system. Firstly, a three-dimensional dynamic model

of the train is established with consideration of the vertical, pitch, and roll motions of the train, as well
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as inter-car articulation effects. The road dynamics model was developed based on a double-layer Kirch-
hoff thin plate resting on a Winkler foundation, with dynamic responses analyzed using the modal super-
position method. The wheel-road interaction was characterized by the Hertzian contact model. Subse-
quently, the simulation on the vertical coupling dynamics of the train-road system was conducted, and
the effects of the system characteristic parameters on train operation quality and road dynamic
performance, including pavement thickness, Young’s modulus, vehicle speed,articulation dampling, and
the grade of the road, were quantitatively analyzed using the Sperling index of the train and the root
mean square value of stress of the road at the wheel contact points. A sensitivity analysis of these
parameters was conducted. The results indicate that increasing pavement thickness, enhancing articula-
tion damping., and improving the grade of the road can improve both train ride quality and road mechani-
cal performance. However, while higher equivalent Young’s modulus of the road and increased vehicle
speed enhance road mechanical performance, they degrade train ride quality. Furthermore, the grade of
the road exhibits the most significant impact on system service performance, followed by operating speed
and pavement thickness, whereas Young’s modulus and articulation damping have relatively minor

effects.

root mean

Sperling index,

Key words virtual rail train, vehicle-road coupling, vertical dynamics,

square of stress
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Table 2 Parameter sensitivity analysis of carbody
Sperling index

Parameter comparsion  Carbodyl Carbody?2 Carbody3
Thickness 0.01 0.01 0.03
Young’s modulus 0.02 0.02 0.02
Speed 0.18 0.15 0.19
Articulation damping 0. 04 0. 04 0. 04
Road grade 0. 38 0. 37 0. 40
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Table 3 Parameter sensitivity analysis of stress RMS
in wheel-road contact interface

Parameter comparsion W11 W12 W21 W22 W31 W32

Thickness 0.26 0.22 0.09 0.08 0.22 0.27
Young’s modulus 0.12 0.05 0.08 0.07 0.05 0.12
Speed 0.56 0.21 0.14 0.13 0.21 0.55

Articulation damping 0.03 0.02 0.0l 0.01 0.02 0.03

Road grade 2.6 2.38 2.58 2.76 2.34 2.6
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Fig. 21 Parameter sensitivity analysis of carbody Sperling index
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