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摘要 在“绝缘子-导线”带电固定自动作业中,飞行机械臂的应用能够显著节约人力资源,并在带电作业

场景下最大程度地保障施工人员的生命安全.然而,针对各类绝缘子-导线紧固的带电消缺作业,均需依据

绝缘子的外形参数、其于横担上的安装位置以及配电网的环境条件,综合开展智能末端执行器控制系统的

设计与开发工作.这无疑对飞行机械臂的控制性能提出了更为严苛的要求.本文以具有两自由度的飞行机

械臂作为研究对象,充分考量重力因素的影响,开展动力学分析,并运用 Udwadia-Kalaba(UK)方程进行系

统建模.同时,结合约束跟随运动控制方法,推导出受限飞行机械臂系统的运动方程.此外,采用模糊控制方

法对机械系统中的不确定性进行描述.通过仿真与实验,验证了所提出控制算法的有效性.
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Abstract In
 

the
 

live-line
 

fixed
 

automatic
 

operation
 

of
 

the
 

􀆵insulator-conductor 
 

system,
 

the
 

application
 

of
 

the
 

flying
 

manipulator
 

can
 

significantly
 

save
 

human
 

resources
 

and,
 

in
 

the
 

scenario
 

of
 

live-line
 

opera-
tion,

 

maximally
 

ensure
 

the
 

life
 

safety
 

of
 

construction
 

workers.
 

However,
 

for
 

various
 

live-line
 

defect
 

elimination
 

operations
 

of
 

fastening
 

insulators
 

and
 

conductors,
 

it
 

is
 

necessary
 

to
 

comprehensively
 

carry
 

out
 

the
 

design
 

and
 

development
 

of
 

the
 

intelligent
 

end-effector
 

control
 

system
 

according
 

to
 

the
 

shape
 

pa-
rameters

 

of
 

the
 

insulators,
 

their
 

installation
 

positions
 

on
 

the
 

cross-arm,
 

and
 

the
 

environmental
 

condi-
tions

 

of
 

the
 

distribution
 

network.
 

This
 

undoubtedly
 

imposes
 

more
 

stringent
 

requirements
 

on
 

the
 

control
 

performance
 

of
 

the
 

flying
 

manipulator.
 

This
 

paper
 

takes
 

a
 

flying
 

manipulator
 

with
 

two
 

degrees
 

of
 

free-
dom

 

as
 

the
 

research
 

object.
 

Fully
 

considering
 

the
 

influence
 

of
 

the
 

gravitational
 

force
 

factor,
 

a
 

dynamic
 

a-
nalysis

 

is
 

carried
 

out,
 

and
 

the
 

Udwadia-Kalaba
 

(UK)
 

equation
 

is
 

used
 

for
 

system
 

modeling.
 

At
 

the
 

same
 

time,
 

combined
 

with
 

the
 

constraint
 

following
 

motion
 

control
 

method,
 

the
 

motion
 

equations
 

of
 

the
 

re-
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stricted
 

flying
 

manipulator
 

system
 

are
 

derived.
 

In
 

addition,
 

the
 

fuzzy
 

control
 

method
 

is
 

adopted
 

to
 

de-
scribe

 

the
 

uncertainties
 

in
 

the
 

mechanical
 

system.
 

Through
 

simulations
 

and
 

experiments,
 

the
 

effective-
ness

 

of
 

the
 

proposed
 

control
 

algorithm
 

is
 

verified.

Key
 

words two-degree-of-freedom
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robotic
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引言
  

随着现代社会的发展,用户对供电可靠性的要

求不断提高.配电网作为将高压输电系统电能分配

到用户终端的重要环节,在正常运行与维护过程中

需要进行各种带电作业,包括设备巡视、维护、改造

及故障排除等[1].配电网绝缘子-导线紧固带电作

业具有安全风险高、劳动强度大、操作复杂等特

点[2],同时由于存在高空作业风险,这些因素使得

人工操作既困难又复杂.然而,机械臂能够长时间

连续工作,无需间歇性操作,特别适用于需要长时

间操作的场合.同时,机械臂可以通过编程迅速适

应不同任务,并调整操作流程以满足多样化需

求[3,4].例如,在高温、化学品或重物搬运等危险或

有害环境中,机械臂能够替代人类操作,从而降低

工人受伤风险.本文将机械臂与四旋翼无人机相结

合,提出了一种面向电网作业的飞行机械臂,该飞

行机械臂在配电网带电作业中能有效降低人工操

作风险[5].
Udwadia-Kalaba(UK)方法是一种用于求解

动力学系统运动方程的解析方法,在机器人学和多

体系统分析中得到了广泛应用.该方法最初由Ud-
wadia和Kalaba在20世纪90年代提出,旨在提供

一种有效的多体动力学问题求解算法[6].

图1 飞行机械臂整体结构模型图

Fig.1 Overall
 

structural
 

model
 

of
 

the
 

flying
 

robotic
 

arm
  

随着机器人技术和自动化技术的发展,Udwa-
dia-Kalaba方法逐渐得到工业界的认可.许多学者

和工程师开始在多体动力学模拟、控制系统设计以

及工程优化等领域应用这一方法.
  

在Sun和 Ma针对动力学系统的不确定性以

及初始条件偏离伺服约束的情况,其基于 Udwa-
dia-Kalaba方法,提出了一种创新的自适应鲁棒控

制方案[7,8].方案的核心在于有效应对系统中的整

体约束和非整体约束问题.完整约束通常指对系统

整体状态的限制,例如速度和位置的限制,而非完

整约束则涉及系统个别部分的限制,如各关节的运

动范围等.该方案通过引入自适应机制,使控制系

统能够实时调整策略.这种调整策略可有效适应动

态环境中的变化.这一机制不仅增强了系统对不确

定性的抵抗力,还确保了在各种条件下的高性能输

出.在2023年,He利用 Udwadia-Kalaba方法,设
计了一种新型的鲁棒控制器,旨在解决不确定性机

械系统的控制问题[9].该控制器的创新之处在于引

入了两个可调节的控制增益,分别应对系统中的不

确定性因素,从而增强机械系统的整体稳定性.在
实际应用中,机械系统往往面临多种不确定性,这
些不确定性可能来源于系统参数变化、外部扰动、

传感器噪声等因素.He的控制器设计基于 Udwa-
dia-Kalaba方法,采用系统化策略应对不确定性.
通过精确建模和动态调整,控制器实时根据系统状

态和环境变化调整增益.该设计使控制器在不确定

性较高的环境中仍保持良好性能[10].本文采用

Udwadia-Kalaba方法对飞行机械臂进行建模,并
引入了约束跟随运动控制方法,给出了受限飞行机

械臂机械系统的运动方程.
  

高性能飞行机械臂需要良好的动态性能和抗

干扰能力.扰动观测器控制算法(DOBC)能够通过

扰动观测器估计并抵消外部扰动,从而精确控制系

统,但该算法对系统非线性较为敏感,设计时需考

虑非线性特性[11,12].模型参考自适应控制算法

(MRAC)是一种非线性控制方法,通过引入参考模

型和自适应机制来控制系统.但 MRAC中的自适

应机制需要时间收敛,可能导致响应较慢[13,14].最
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后是经典的比例积分微分(PID)控制,其适用于线

性和非线性系统,并能够根据实时系统状态进行调

节,以适应系统变化.但对于非线性系统,需要先进

行线性化处理[15,16].在众多控制算法中,本文提出

的鲁棒控制算法在处理非线性、不确定性系统方面

具有优势.
  

本文基于 Udwadia-Kalaba方程,将飞行机械

臂二阶形式的伺服约束作为控制目标,并将得到的

确定性标称约束力解析式作为控制器的第一部分.
控制器的第二部分用于补偿初始条件的不相容性,

而第三部分则专门处理系统的不确定性.最后采用

模糊优化方法,对所提出的鲁棒控制器的控制参数

进行优化,使飞行机械臂系统在相互冲突的性能指

标下能够获得最优的控制参数.
  

本文的主要贡献包括以下四个方面:(1)基于

Udwadia-Kalaba方程,给出确定性约束系统的解

析约束力形式;(2)针对不确定性约束系统,提出了

一种新型的鲁棒控制器;(3)结合模糊优化,对所提

出的鲁棒控制器的控制参数进行优化;(4)通过

MATLAB仿真平台与实验,结合飞行机械臂的动

力学模型,与其他控制算法对比,验证了所提出控

制器的优异性能.

1 动力学模型和理想约束

1.1 飞行机械臂动力学建模
  

飞行机械臂通过关节电机直接驱动实现运动

控制,采用嵌入式控制器进行设计.系统包含两个

旋转关节,分别对应大臂绕基座旋转和小臂绕肘关

节旋转两个自由度.由于运动学链式结构特性,两
个关节存在动力学耦合效应,其惯性耦合矩阵项直

接影响末端定位精度.图2给出了飞行机械臂的简

化模型.为了简化计算,将连杆和关节处电机的质

心集中在连杆右端点处,其中,连杆1和2的质量

分别为m1 和m2,连杆1和连杆2的长度分别为l1
和l2.

  

基于能量的拉格朗日方法经常用于对机械系

统的动力学建模[17].它的一般表达式是:

d
dt
∂L(θ,θ

·
,t)

∂θ
·

i

􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 -

∂L(θ,θ
·
,t)

∂θi
=τi(t)-τfi

(t)

  i=1,2,…,n (1)
  

上式中θi∈Rn 表示系统广义坐标,其对时间

t求导后得到θ
·

i,θ
·

i∈Rn 表示系统广义速度,τi(t)
和τfi

(t)分别表示输入转矩和外部干扰转矩,L 表

示拉格朗日乘数,可具体表述为下列形式:

L(θ,θ
·
,t)=T(θ,θ

·
,t)-U(θ,t) (2)

  

上式中,T 表示系统动能,U 表示系统势能.

图2 飞行机械臂平面简图

Fig.2 Plane
 

diagram
 

of
 

the
 

flying
 

robot
 

arm
  

机械臂的质心坐标为(x1,y1)和(x2,y2).如
图2所示,其中,

x1=l1cosθ1

y1=l1sinθ1

x2=l1cosθ1+l2cosq
y1=l1sinθ1+l2sinq (3)

  

式(3)对时间t求导后,得:

x·1=-l1sinθ1θ
·

1

y
·
1=l1cosθ1θ

·

1

x·2=-l1sinθ1θ
·

1-l2sinqq
·

y
·
2=l1cosθ1θ

·

1+l2cosqq
· (4)

  

系统的动能T 由下式计算:

T=T1+T2

 =
1
2m1(x

·2
1+y

·2
1)+

1
2m2(x

·2
2+y

·2
2)

 =
1
2
(m1+m2)l21θ

·2
1+
1
2m2l21q

·2+

 m2l1l2cos(θ1-q)θ
·

1q
· (5)

  

系统的势能U 由下式计算:

U=U1+U2

 =m1gy1+m2gy2

 = (m1+m2)gl1sinθ1+m2gl2sinq (6)
  

其中,θ1 和q均为关节角度.
  

将式(2)代入到式(1)后,便可以得到飞行两自
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由度机械臂的动力学模型:

M(θ,t)θ
··
(t)+C(θ,θ

·
,t)θ

·
(t)+G(θ,t)=τ(t)

(7)

 

其中,M(θ,t)∈R2×2 为惯性矩阵,C(θ,θ
·
,t)∈

R2×2 表示科里奥利和离心力矩阵,G(θ,t)∈R2 表

示重力,τ(t)∈R2 表示控制力矩矩阵.
  

将式(7)中的变量展开成如下形式:

M(θ,t)=
M11 M12

M21 M22

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (8)

θ=
θ1

θ2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,θ

·
=

θ
·

1

θ
·

2

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 ,θ

··
=

θ
··

1

θ
··

2

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 ,τ=

τ1

τ2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (9)

C(θ,θ
·
,t)=

C11 C12

C21 C22

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (10)

G(θ,t)=
G11

G21

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (11)

  

惯性矩阵中的元素可具体表述为下列形式:

M11=(m1+m2)l21
M12=M21=m2l1l2cos(θ1-q)

M22=m2l22 (12)
科里奥利和离心力矩阵中的元素可具体表述为:

C11=C22=0
C12=m2l1l2sin(θ1-q)

C21=-m2l1l2sin(θ1-q)θ
·

1 (13)
  

重力项中的元素可具体表述为:

G11=(m1+m2)gl1cosθ1

G22=m2gl2cos(q) (14)

1.2 机械系统中的伺服约束
  

由拉格朗日力学基本知识,可以得到一般情况

下无约束系统的运动方程[18].

M(θ,t)θ
··
(t)=Q(θ,θ

·
,t) (15)

  

式中Q(θ,θ
·
,t)∈Rn,它的具体表达式如下:

Q(θ,θ
·
,t)=-C(θ,θ

·
,t)θ

·
-G(θ,t) (16)

  

该方程表明Q(θ,θ
·
,t)∈Rn 在大小上等于科

里奥利离心力和重力之和.
  

假设系统受k 个完整约束和m-k 个非完整

约束,那么完整约束和非完整约束可作如下表达:

ϕi(θ,t)=0, i=1,2,…,k

ϕi(θ,θ
·
,t)=0, i=k+1,k+2,…,m

(17)

  

将所需性能建模为如下的伺服约束,即当控制

输入充当约束力时,应遵循该约束:

∑
n

i=1
Ali(θ,t)θ

·

i+Al(θ,t)=0, l=1,…,m

(18)

  

式中m 用于表示引入系统的约束个数,n 表示系

统坐标变量的维数.Ali(·)和Al 在θ 和t上均为

C1 类函数.这些约束意味着对速度和位移都有限

制,并且是约束的一阶形式.其矩阵形式为:

A(θ,t)θ
·
=b(θ,t) (19)

  

其中,A=[Ali]m×n,b=[b1,b2,…,bm]T .
  

现将这些约束转换为二阶形式,约束方程(18)

对时间t求导可得:

∑
n

i=1

d
dtAli(θ,t)θ

·

i+∑
n

i=1
Ali(θ,t)θ

··

i+

 ddtAl(θ,t)=0 (20)
  

其中

d
dtAli(θ,t)=∑

n

k=1

∂Ali(θ,t)
∂θk

θ
·

k +
∂Ali(θ,t)
∂t
(21)

d
dtAl(θ,t)=∑

n

k=1

∂Al(θ,t)
∂θk

θ
·

k +
∂Al(θ,t)
∂t

(22)

  

方程(20)是约束的二阶形式,可以改写为:

∑
n

i=1
Ali(θ,t)θ

··

i= -∑
n

i=1

d
dtAli(θ,t)θ

·

i-
d
dtAl(θ,t)

∶=al(θ
·
,θ,t)

   

(l=1,…,m)

(23)

  

其矩阵形式为:

A(θ,t)θ
··
=a(θ

·
,θ,t) (24)

  

其中A=[Ali]m×n,a=[a1
 a2…

 

am]T .无论初始条

件和不确定性如何[19],在系统运动的整个过程中

都必须严格满足固定约束(24).

1.3 机械系统中的广义约束力
  

将伺服约束施加到系统当中,则需要在系统中

施加额外的“广义约束力”Qc.
  

Qc(q,q
·,t)∈Rn 是施加在系统上的额外力,在

拉格朗日力学中,Qc(q,q
·,t)被视为理想力,其遵

循达朗贝尔原理.
  

Udwadia和 Kalaba证 明 了 理 想 约 束 力 的

15



动 力 学 与 控 制 学 报 2025年第23卷

形式[20,21]:

Qc(θ,θ
·
,t)=M1/2(θ,t)[A(θ,t)M-1/2(θ,

 t)]+×[a(θ,θ
·
,t)-A(θ,t)M-1(θ,t)Q]

(25)

  

其中,“+”表示 Moore-Penrose广义逆.
  

约束力(25)为所提出控制器的第一部分.

2 鲁棒控制器设计
  

实际情况下,飞行两自由度机械臂存在参数不

确定性.基于此,可将原系统动力学方程式(7)扩展

为包含不确定性的形式[22]:

M(θ,σ,t)θ
··
(t)+C(θ,θ

·
,σ,t)θ

·
(t)+

 G(θ,σ,t)=τ(t) (26)
  

式(26)中所引入的不确定性σ 时变且有界,τ(t)∈
Rn 表示控制力矩矩阵.

  

在设计控制器τ(t)时,考虑不确定性因素的

影响,可以对M、Q 和Qc 做如下分解:

M(θ,σ,t)=M
-(θ,t)+ΔM(θ,σ,t)

Q(θ,θ
·
,σ,t)=Q

-(θ,θ
·
,t)+ΔQ(θ,θ

·
,σ,t)

Qc(θ,θ
·
,σ,t)=Q

-c(θ,θ
·
,t)+ΔQc(θ,θ

·
,σ,t)
(27)

  

其中M
-、Q

-
和Q

-c 表示对应部分的标称项,而ΔM、

ΔQ 和ΔQc 则是取决于σ 的不确定项.同时,M
-、C

-、

G
-、ΔM、ΔQ 和ΔQc 都是连续的.之后,令:

D(θ,t)∶=M
-

-1(θ,t),

ΔD(θ,t)∶=M-1(θ,σ,t)-M
-

-1(θ,t)

E(θ,σ,t)∶=M
-
(θ,t)M-1(θ,σ,t)-I.

  

因此,ΔD(θ,t)=D(θ,t)E(θ,σ,t).
  

若矩阵A(θ,t)满秩,则A(θ,t)AT(θ,t)是可

逆的.
  

存在ρ
^
E(·)∶Rn×R→(-1,∞),有如下不

等式成立:

1
2minσ∈Σ

λm[E(θ,σ,t)+ET(θ,σ,t)]≥ρ
^
E(θ,t)

(28)
  

其中,λm(·)表示最小特征值,min(·)表示最

小值.
  

给定一个矩阵P∈Rn×n,P>0,令:

Ψ(θ,t)∶=PA(θ,t)D(θ,t)DT(θ,t)AT(θ,t)P
(29)

  

存在一个标量常数λ>0,使得:

inf
(θ,t)∈Rn×R

λm[Ψ(θ,t)]≥λ (30)
  

其中,Ψ(θ,t)正定,λm[Ψ(θ,t)]下有正界[23].
  

现在考虑近似约束跟随问题.由于建模中可能

存在不确定性,即当误差β≠0时,可能出现Aθ
·
≠

b,Aθ
··
≠a的情况.此外,系统初始阶段可能存在误

差β≠0.考虑以下新型鲁棒控制器(novel
 

robust
 

controller,
 

NRC)设计:

τ(t)=p1[θ(t),θ
·
(t),t]+p2[θ(t),θ

·
(t),

 t]+p3[θ(t),θ
·
(t),t] (31)

  

其中,

p1[θ(t),θ
·
(t),t]=Qc

p2[θ(t),θ
·
(t),t]=-κM

- -1(θ,t)AT(θ,t)Pβ

p3[θ(t),θ
·
(t),t]= -γ(θ,θ

·
)μ(θ,θ

·
,t)ρ(θ,θ

·
,t)

(32)

  

其中,􀆠、κ∈R,κ>0

γ(θ,θ
·
,t)=
[1+ρ

^
E(θ,t)]-1

‖μ-(θ,θ
·
,t)‖·‖μ(θ,θ

·
,t)‖

 if
  

‖μ(θ,θ
·
,t)‖>􀆠

[1+ρ
^

E(θ,t)]-1

‖μ-(θ,θ
·
,t)‖2􀆠

if
  

‖μ(θ,θ
·
,t)‖ ≤􀆠

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(33)
  

其中,

μ(θ,θ
·
,t)=η(θ,θ

·
,t)ρ(θ,θ

·
,t)

η(θ,θ
·
,t)=μ-(θ,θ

·
,t)β(θ,θ

·
,t)

μ-(θ,θ
·
,t)=M

- -1(θ,t)AT(θ,t)P (34)
  

因此,系统动力学方程式(26)可重新表述为:

Mθ
··
+Cθ

·
+G=p1+p2+p3 (35)

  

其中,p1 项用于处理系统中的伺服约束,p2 项用

于处理系统中的初始条件不相容性,p3 项用于处

理系统中的不确定性.

3 模糊优化设计
  

不确定性量化理论框架包含概率建模、模糊集

理论及区间分析三类范式.然而,只有模糊集理论

才能通 过 不 确 定 性 隶 属 函 数 定 量 地 描 述 不 确

定性[24].
  

在NRC控制算法的p2 项中,若参数κ取值过

大,则会引发系统产生高频振荡;若参数κ 取值过

25



第9期 陈振宁等:面向电网带电作业的飞行机械臂动力学建模与鲁棒控制

小,由于系统存在的不确定性因素,将致使稳态误

差增大.飞行机械臂系统的控制任务在于,在相互

冲突的性能指标之间,寻求最优的控制参数[25].

3.1 模糊集框架
  

为应对不确定性边界未知的难题,采用模糊集

理论对不确定性进行定量描述.具体如下:
  

(1)初始状态的模糊限制.对于θ0[即θ(t0)]
的每个分量,记为θ0i,i=1,2,…n,在紧集论域

Ξi⊂R 中存在一个由隶属度函数μΞi∶Ξi→[0,1]

刻画的模糊集Q0i.即

Q0i={[θ0i,μΞi
(θ0i)]|θ0i ∈Ξi} (36)

  

(2)不确定参数的模糊限制.σ(t)(时变不确定

性)的每个分量由一个模糊集Si={[σ,μ(σi)]|
σi∈∑i}表示,其中μi(·)定义在紧集域∑i 上.

  

对不确定性θ0i 和σ(t)施加模糊限制.同时,

对机械系统中的不确定性采用模糊描述.这种模糊

描述比运用概率方法更具有优势[26].
  

为评估模糊不确定性下的系统性能,引 入

D-operation作为一种去模糊化机制.对于模糊集

N={[v,μN (v)]}以及函数 f∶N →R,可 由

D-operation给出D[f(v)]的具体表达式[27]:

D[f(v)]=
∫N

f(v)μN(v)dv

∫N
μN(v)dv

(37)
  

现提出一个二次成本函数,以平衡瞬态跟踪误

差、稳态误差和控制输入量:

J(κ,ts)=D[∫
∞

ts
η2(κ,tτ,ts)dtτ]+

 αD[η2
∞(κ)]+βκ2 (38)

  

其中,κ项为所提出的 NRC中p2 项的控制参数,

tτ 是时间积分变量,α 和β 都是大于0的,且都是

标量参数.式(38)中,瞬态性能项为:

η(κ,tτ,ts)= Vs-
χ
ψ  e-ψ(tτ-ts),

  

ψ=
2λκ

λM(P)

(39)

  

式(39)用于刻画呈指数衰减的误差能量,其中Vs=

βT(ts)Pβ(ts),χ=
􀆠
2.􀆠是所提出的NRC中p3 项

的控制参数,用于将实际存在的残差引入性能指

标,从而系统性地优化控制增益κ.该设置实现了

模糊闭环系统稳定性与最优性之间的合理均衡.
  

式(39)中,稳态项为:

η∞(κ)∶=
χ
ψ

(40)
  

稳态项用于限制最终跟踪误差的幅度.

3.2 闭式最优增益推导
  

通过将η(·)和η∞(·)代入J(·),可得到显

式表达式:

∫
∞

ts
η2(κ,tτ,ts)dtτ=

V2
s

2ψ
-
Vsχ

ψ2 +
χ2

2ψ3
(41)

D[∫
∞

ts
η2dtτ]=

1
2ψ

D[V2
s]-

1
ψ2D[Vsχ]+

 1
2ψ3D[χ

2] (42)
  

设λM(P)和λm(P)分别表示P 的最大和最小

特征值.定义常数:
 

κ1=
λM(P)
4λ D[V2

s],

κ2=
λ2
M(P)
4λ2 D[Vsθ],

κ3=
λ3
M(P)
16λ3 D[θ2],

κ4=
λ2
M(P)
4λ2 D[θ2].

  

性能指标简化为:

J(κ,ts)=
κ1

κ -
κ2

κ2+
κ3

κ3+
ακ4

κ2 +βκ2 (43)
  

将优化设计问题等效为以下约束优化问题,对
于任意ts,

minκJ(κ,ts) subject
 

to
 

κ>0 (44)
  

通过使用式(38)中的性能指数,寻求最优解.
对于任意ts,取J 对κ的一阶导数:

 ∂J∂κ=-
κ1

κ2+2
κ2

κ3-3
κ3

κ4-2α
κ4

κ3+2βκ

  =
1
κ4
(-κ1κ2+2κ2κ-3κ3-2ακ4κ+2βκ5)

(45)
  

令∂J/∂κ=0求解最优解,得:

-κ1κ2+2κ2κ-3κ3-2ακ4κ+2βκ5=0
(46)

  

式(46)是一个五次多项式方程.
  

对于给定的κ1、κ2、κ3 和κ4,可以通过数值求

解式(46)确定最优设计参数.
  

采用κ>0的最优鲁棒控制设计方案,可以使

对应的性能指标J 达到全局最小值.
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4 数值仿真与实验
  

在实际电网带电作业过程中,外部环境的复杂

扰动始终作用于飞行机械臂系统,时刻影响其稳定

性.
  

多场景仿真与实验结果表明,与智能控制(In-
telligent

 

control,IC)(p1+p2)和PID控制算法相

比,所提出的NRC(p1+p2+p3)控制算法,不仅能

够确保飞行机械臂系统实现高精度的轨迹跟踪,还
能有效保证系统的稳定性.

4.1 理想轨迹约束仿真
  

为了观察不同控制器的动态性能,仿真过程对

飞行机械臂施加正弦信号约束,仿真参数如表1所

示.飞行机械臂运动学和动力学模型关键参数如表

2所示.
表1 各控制器最优控制参数

Table
 

1 Optimal
 

control
 

parameters
 

for
 

each
 

controller

Control
 

algorithm Control
 

Parameters

Kp=diag[360;300]

PID Ki=diag[5;4]

Kd=diag[42;40]

IC P=diag[10;0.03]
κ=30

P=diag[10;0.03]

NRC κ=38.69

􀆠=0.5

表2 飞行机械臂运动学和动力学模型关键参数

Table
 

2 Key
 

parameters
 

of
 

the
 

kinematic
 

and
 

dynamic
 

models
 

of
 

the
 

flying
 

manipulator

Parameter Value Parameter Value Unit

m1 2.4 m2 2.2 kg

l1 270 l2 248 mm

θ1+θ2=0

θ1=
π
3sin

π
3  

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (47)

  

式(47)对时间t求一阶和二阶导数得:

θ
·

1+θ
·

2=0

θ
··

1=
π2

9cos
πt
3  

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

  

θ
··

1+θ
··

2=0

θ
…

1=-
π3

27sin
πt
3  

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (48)

式(48)描述了飞行机械臂系统的一阶伺服约

束和二阶伺服约束.因此,式(19)和式(24)中的元

素可具体表述为:

A=
1 1
1 0
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

b=
0

π2

9cos
πt
3  

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ,a=

0

-
π3

27sin
πt
3  

􀭠

􀭡
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 (49)

  

初始跟踪误差不为0时,初始条件不相容可描

述为:

e1(0)=
π
9

e2(0)=-e1(0) (50)
  

可以通过引入周期性扰动来模拟飞行机械臂

系统内部的不确定性及其所受外部干扰.这类周期

性扰动可表述为:

mi=m-i+Δmi (51)
  

其中,Δmi=0.1cos(t),i=1,2,3,4.
在关节控制力矩响应的初始阶段,与IC控制算

法和PID控制算法相比,所提出的NRC控制算法能

够以最快的响应速度,稳定地输出关节控制力矩.
在给定的理想约束轨迹下,与IC控制算法和

PID控制算法相比,所提出的 NRC控制算法以更

快的响应速度赶上理想约束轨迹,且在系统达到稳

定后,NRC控制算法的稳态误差最小,最终的仿真

结果如图3~图5所示.

图3 飞行机械臂理想轨迹跟踪力矩仿真分析曲线

Fig.3 Simulation
 

analysis
 

curve
 

of
 

the
 

ideal
 

trajectory
 

tracking
 

torque
 

for
 

the
 

flying
 

robotic
 

arm
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图4 飞行机械臂理想轨迹跟踪关节1仿真分析曲线

Fig.4 Simulation
 

analysis
 

curve
 

of
 

joint
 

1
 

for
 

the
 

ideal
 

trajectory
 

tracking
 

of
 

the
 

flying
 

robotic
 

arm

图5 飞行机械臂理想轨迹跟踪关节2仿真分析曲线
Fig.5 Simulation

 

analysis
 

curve
 

of
 

joint
 

2
 

for
 

the
 

ideal
 

trajectory
 

tracking
 

of
 

the
 

flying
 

robotic
 

arm

4.2 阶跃响应仿真

阶跃响应仿真是控制系统分析中常用的一种

方法,通过施加突变的输入信号(如阶跃信号)来测

试系统的响应特性.考虑到实际电网作业中可能遇

到的复杂扰动(如风载、电磁干扰等),对飞行机械

臂系统进行阶跃响应仿真有助于进一步验证所提

出控制算法在提升飞行机械臂系统动态性能、稳定

性及其对外部干扰(如突发变化)适应能力方面的

有效性.
在t=20

 

s时对系统施加阶跃信号,图6(a)和
图7(a)中的仿真结果表明,与IC和PID控制算法

相比,所提出的NRC控制算法在动态响应性能上

表现出无震荡且过冲时间较短的优势.同时,图6
(b)和图7(b)中的仿真结果显示,系统稳定后,

NRC控制算法能够精确跟踪目标值,稳态误差较

小,系统精度较高.

图6 飞行机械臂阶跃响应关节1仿真分析曲线

Fig.6 Simulation
 

analysis
 

curve
 

of
 

joint
 

1
 

for
 

the
 

step
 

response
 

of
 

the
 

flying
 

robotic
 

arm

图7 飞行机械臂阶跃响应关节2仿真分析曲线
Fig.7 Simulation

 

analysis
 

curve
 

of
 

joint
 

2
 

for
 

the
 

step
 

response
 

of
 

the
 

flying
 

robotic
 

arm

4.3 实验结果分析
  

以六自由度机械臂末端两关节为实验对象(飞

行机械臂施工作业场景图如图8所示,实验平台如

图9所示),对其两关节定义如下轨迹约束:

θ1+θ2=0

θ2=
π
4sin

π
4  +cos(t)

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (52)

  

上述轨迹约束曲线保留了正弦和余弦信号的

基本数学特性.这种简化允许在复合信号约束下综

合评估飞行机械臂系统的轨迹跟踪性能.
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图8 飞行机械臂施工作业场景图

Fig.8 Scenario
 

diagram
 

of
 

flying
 

manipulator
 

operation

图9 飞行机械臂实验平台

Fig.9 Flying
 

manipulator
 

experimental
 

platform
  

负载变化是飞行机械臂系统参数不确定性的

主要来源.为验证不同控制算法对负载扰动的鲁棒

性,实验在机械臂末端法兰依次安装1
 

kg、2
 

kg和

3
 

kg的附加质量块,并令系统在各负载工况下跟

踪约束轨迹,以此评估算法对负载变化的鲁棒性.
  

可用式τ=Kia 来描述控制转矩与控制电流之

间的关系,其中 K 为系数,ia 为控制输入电流.与

IC控制算法相比,所提出的NRC控制算法引入了

处理不确定性的p3 项,因此其控制电流较大.
  

在不同的外部负载作用下,与IC和PID算法

相比,NRC算法表现出更高的轨迹跟踪精度和更

强的扰动抑制能力.实验数据如图10所示.

图10 不同负载条件下飞行机械臂两关节位置误差实验曲线
Fig.10 Experimental

 

curves
 

of
 

joint
 

position
 

errors
 

for
 

the
 

flying
 

robotic
 

arm
 

under
 

different
 

load
 

conditions

5 结论
  

本文针对非线性、不确定性的飞行机械臂机械

系统,提出了一种新颖实用的鲁棒控制算法,该算

法基于Udwadia-Kalaba方程,通过描述理想系统

的运动轨迹,得到了相应的伺服约束.控制器的第

一部分为系统在伺服约束下的约束力解析表达式,

所提出控制器的第二部分用于处理系统初始条件

不相容问题,第三部分作为鲁棒控制部分,用于补

偿不确定性的影响.然后结合模糊优化,对所提出

的鲁棒控制算法中的控制参数进行了优化.最后,

通过仿真和实验,结合飞行机械臂的动力学模型,

通过与其他控制算法的对比,验证了所提出的鲁棒

控制方法在动态性能上的有效性.
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