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摘要 针对简支梁结构横向振动控制问题,开展了含非线性振子的简支梁横向振动特性研究.首先建立了

非线性振子-梁耦合振动模型,基于 Hamilton原理推导了系统的非线性振动微分方程.采用增量谐波平衡

法和弧长延拓法,得到了系统幅频响应完整的半解析解,并结合Floquet理论对解的稳定性进行分析.研究结

果表明:非线性振子在合适参数取值下使得简支梁一阶模态无量纲峰值由3.30降低至0.26,降幅达92.12%,

且未产生新的共振峰;非线性振子的非线性刚度和线性刚度共同决定其减振频率位置,其中线性刚度的存

在易在目标频段诱发新的共振峰.非线性振子的引入能够突破传统线性振子的频带限制.
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Abstract In
 

this
 

study,
 

the
 

investigation
 

of
 

transverse
 

vibration
 

characteristics
 

of
 

the
 

simply
 

supported
 

beam
 

with
 

nonlinear
 

resonators
 

is
 

carried
 

out
 

to
 

address
 

the
 

problem
 

of
 

transverse
 

vibration
 

control
 

of
 

the
 

simply
 

supported
 

beam
 

structure.
 

Firstly,
 

a
 

nonlinear
 

resonator-beam
 

coupling
 

vibration
 

model
 

is
 

es-
tablished,

 

and
 

the
 

nonlinear
 

vibration
 

differential
 

equations
 

of
 

the
 

system
 

are
 

derived
 

based
 

on
 

Hamilton
's

 

principle.
 

The
 

complete
 

semi-analytical
 

solution
 

of
 

the
 

amplitude-frequency
 

response
 

of
 

the
 

system
 

is
 

obtained
 

by
 

using
 

the
 

incremental
 

harmonic
 

balance
 

method
 

and
 

the
 

arc
 

length
 

extension
 

method,
 

and
 

the
 

stability
 

of
 

the
 

solution
 

is
 

analysed
 

by
 

combining
 

with
 

the
 

Floquet
 

theory.
 

The
 

investigation
 

results
 

show
 

that
 

the
 

nonlinear
 

resonator
 

reduces
 

the
 

dimensionless
 

peak
 

of
 

the
 

first-order
 

modes
 

of
 

the
 

simply
 

supported
 

beam
 

from
 

3.30
 

to
 

0.26
 

under
 

the
 

appropriate
 

parameter
 

values,
 

with
 

a
 

reduction
 

of
 

92.12%,
 

and
 

does
 

not
 

generate
 

new
 

resonance
 

peaks;
 

the
 

nonlinear
 

stiffness
 

and
 

linear
 

stiffness
 

of
 

the
 

nonlinear
 

resonator
 

determine
 

the
 

vibration
 

reduction
 

frequency
 

location,
 

and
 

the
 

existence
 

of
 

linear
 

stiffness
 

is
 

easy
 

to
 

induce
 

new
 

resonance
 

peaks
 

in
 

the
 

target
 

frequency
 

band.
 

The
 

introduction
 

of
 

nonlinear
 

resona-
tors

 

can
 

break
 

through
 

the
 

frequency
 

band
 

limitation
 

of
 

the
 

traditional
 

linear
 

resonators.
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引言
  

结构振动控制是保障工程系统安全性与可靠

性的关键技术,在航空航天、土木建筑及精密机械

等领域具有重要意义.传统线性振动控制方法[如
调谐质量阻尼器(TMD)[1,2]]通过共振耦合原理耗

散振动能量,但受限于线性系统的幅频特性,其有

效减振带宽通常较窄,且在频带边缘易引入新的共

振峰,导致主结构振动响应异常增大,制约了线性

控制技术的工程应用.
  

非线性振子的引入为突破线性振动控制方法

的局限性提供了新途径.相较于遵循胡克定律的线

性系统,非线性振子通过非线性刚度或几何非线性

效应展现出强频率依赖性响应特性.理论与实验研

究表明,非线性系统的幅频曲线具有多值性、跳跃

现象和滞后效应,可在宽频域内实现低响应幅

值[3-5].相较于线性控制方法在频带边缘易激发的

共振放大问题,非线性振子的非线性硬化或软化特

性可有效抑制主系统振动峰值的同时,避免了线性

控制中易出现的新共振峰.非线性振子主要包括刚

度非线性和阻尼非线性两种,早期研究大多聚焦于

刚度 非 线 性,如 立 方 刚 度、分 段 线 性 刚 度 等 类

型[6-8].这类设计通过引入非线性刚度元件,在保持

传统线性振子基本功能的同时,拓宽了振动抑制的

有效频率范围.其中,立方刚度振子通过立方项耦

合实现非线性特性,分段线性刚度振子则通过多段

刚度组合形成非线性响应,仅含非线性刚度的非线

性振子被称为非线性能量阱[9].Li[10]采用增量谐

波平衡法和弧长延拓法,研究了双稳态非线性能量

阱对梁和板结构的振动控制效果,同时得到了非线

性能量阱的参数影响规律.文献[11]针对双弹簧非

线性能量阱提出了一种振动优化方法,得到了稳态

位移振幅最小时的能量阱最优参数以及行为特征,

在实现振动抑制的同时避免了新共振峰值的引入.
值得注意的是,非线性振子还可能引发主系统复杂

的非线性动力学行为[12,13],这类系统在特定参数

条件下会出现不同振动模态的共存状态,其动力学

响应呈现出对初始条件的敏感性和分岔特性.近年

来,非线性振动控制技术在工程实践中取得显著进

展.文献[3,14]在悬臂梁结构的基础上引入磁铁,

实现了无接触情况下高效的能量传递,设计出一种

压电磁耦合非线性能量俘获器,以有效抑制振动并

实现宽频俘能效果.康厚军等[15]通过理论和实验

的方法研究了斜拉桥线性和非线性振动问题,发现

了丰富的非线性振动现象.高原等[16]设计了一种

基于负刚度的惯容型非线性能量阱,并将其应用于

整星结构的振动控制,得到了较好的减振效果.
  

然而,现有研究多聚焦于单一非线性元件的优

化设计,对非线性振子与主结构耦合系统的动力学

行为及参数匹配机制仍缺乏系统性认识.针对这一

问题,本文以简支梁结构为研究对象,构建非线性

振子-梁耦合系统模型,通过理论分析与数值仿真

揭示非线性振子参数对简支梁横向振动特性的影

响规律,并分析非线性振子和简支梁的动力学响应

行为,为工程结构的宽频振动控制提供了理论支

撑,为非线性减振装置的参数优化设计提供了有益

参考.

1 含非线性振子简支梁动力学模型与求解

1.1 系统的耦合动力学模型
  

针对简支梁结构的横向振动抑制问题,考虑在

其表面附加若干非线性振子,构建了简支边界非线

性梁横向振动模型,如图1所示.图1中,简支梁的

长度记为L,在简支梁表面附加 N* 个非线性振

子,其编号由n 表示,第n 个非线性振子的质量、

线性刚度、非线性刚度和阻尼分别可表示为m*
n 、

k*
1n、k*

3n、c*
n .简支梁在外部激励力的作用下发生振

动,激励力可表示为F(t)=F0cos(ωt),激励力作

用位置坐标x0.图1所示为简支梁上直角坐标系,

简支梁的横向振动位移可用w(x,t)表示,x 表示

图1 含非线性振子简支梁动力学模型
Fig.1 Dynamic

 

model
 

of
 

the
 

simply
 

supported
 

beam
 

with
 

nonlinear
 

resonators
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简支梁表面坐标位置,非线性振子的安装坐标可表

示为x*
n ,n 表示非线性振子的编号.

  

为分析附加非线性振子对简支梁横向振动特

性的影响,对于细长梁的低频横向振动,可以忽略

梁的剪切变形以及截面绕中性轴转动惯量的影响,

这种梁被称为Bernoulli-Euler梁.含非线性振子简支

梁结构可被视为一个连续-离散耦合的振动系统,

该系统是由连续的简支梁和离散的振子组成.根据

Hamilton原理,可得到系统的耦合振动方程为:

ρA
∂2w(x,t)
∂t2

+Cb
∂w(x,t)
∂t +EI∂

4w(x,t)
∂x4

 

 =F(t)δ(x-x0)+∑
N*

n=1
F*

n (t)δ(x-x*
n ) (1)

m*
nu
··*

n (x*
n ,t)+c*

n [u
·*
n (x*

n ,t)-w·(x*
n ,t)]+

 k*
1n[u*

n (x*
n ,t)-w(x*

n ,t)]+
 k*

3n[u*
n (x*

n ,t)-w(x*
n ,t)]3=0

 

(2)

其中

F*
n (t)=F*

kn +F*
cn

F*
kn =k*

1n[u*
n (x*

n ,t)-w(x*
n ,t)]+

 k*
3n[u*

n (x*
n ,t)-w(x*

n ,t)]3

F*
cn =c*

n [u
·*
n (x*

n ,t)-w·(x*
n ,t)]

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(3)

其中,ρ、A、E、I 分别代表梁的密度、横截面积、杨
氏模量、转动惯量;Cb 代表梁的阻尼;w(x,t)代

表梁 上 坐 标 x 处 在t 时 刻 的 横 向 振 动 位 移、

u*
n (x*

n ,t)代表梁上坐标x*
n 处在t时刻非线性振

子的位移;F*
n (t)代表非线性振子的反作用力,包

含非线性弹簧力F*
kn 和阻尼力F*

cn .
  

定义ε=m*
n/ρAL 表示非线性振子与梁的质

量比,为简化耦合振动方程(1)至(2)的求解过程,

提出以下无量纲变换:

x- =
x
L
,x-*n =

x*
n

L
,w- =

w
L
,u-*n =

u*
n

L
,

T=
EI

ρAL4t,k
-*
1n =

k*
nL3

EI
,k
-*
3n =

k*
3nL5

EI
,

σ=
CbL2

2 ρAEI
,ξ*

n =
c*

nL
2 ρAEI

,

F
- *

n (t)=F*
n (t)

L2

EI
,F

-(t)=F(t)L
2

EI
,

Ω= ρAL4

EI ω (4)
  

将式(4)无量纲变换代入式(1)和式(2),可得:

w-
··

+2σw-
·

+w-x-x-x-x-
 =

 

F
-
δ(x- -x-0)+

 ∑
n
F
- *

nδ(x- -x-*n )+∑
i
F
-
iδ(x- -x-i)

 

(5)

ε*
nu-
··
*
n +2ξ(u

-·*
n -w-

·
*
n )+k

-*
1n(u-*n -w- *

n )+

 k
-*
3n(u-*n -w- *

n )3=0
 

(6)

其中,w-x-x-x-x- =∂4w-(x-,T)/∂x-4 表示梁的无量纲振

幅对无量纲坐标x- 的四阶导数.

1.2 系统耦合振动方程的半解析解
  

由于方程(6)中含有非线性项,线性方程的求

解方法已不能满足求解需求,这里采用增量谐波平

衡法(IHB方法)推导耦合振动方程的半解析解.由
于简支梁为等截面均质直梁,不考虑梁中的非线性

因素,简支梁的横向振动满足模态叠加原理,因此

可将梁的横向振动位移表示为:

w-(x-,T)=∑
Q

m=1
Φm(x-)qm(T) (7)

其中,m 为模态阶数,Φm(x-)= 2sin(mπx-)为简

支梁第m 阶模态下的横向振型函数,qm(T)为简

支梁第m 阶模态下的广义坐标.
将式(7)代入式(6),在等号两侧同时乘以

Φm'(x-)= 2sin(m'πx-)并对x- 进行 [0,1]区间内

积分,可得:

q
··
+2σq

·
+(mπ)4q

 

=
 

F
-
Φm(x-0)+

 ∑
i
F
-
iΦm(x-i)+∑

n
F
- *

nΦm(x-*n )
 

(8)
  

考虑简支梁的前Q 阶模态参与计算,定义各

模态 响 应 的 广 义 坐 标 为 待 求 未 知 向 量:q =
[q1,q2,…,qQ]T ,激励力和非线性振子的作用位

置振型函数可由向量记为:

ΦF=[Φ1(x-0),Φ2(x-0),…,Φ3(x-0)]

ΦC=[Φ1(x- *n ),Φ2(x- *n ),…,Φ3(x- *n )] (9)
  

则式(8)可进一步表示为矩阵方程,即:

q
··
+2σq

·
+α2q

 

=
 

ΦT
FF0cos(ΩT)+

 ∑
n
ΦT
C{2ξn[u-

·
*
n -ΦCq

·]+k
-*
1n[u-*n -ΦCq]+

 k
-*
3n[u-*n -ΦCq]3} (10)

ε*
nu-
··
*
n +2ξn[u-

·
*
n -Φ*

nq
·]+k

-*
1n[u-*n -Φ*

nq]+

 k
-*
3n[u-*n -Φ*

nq]3=0 (11)

其中,αm =(mπ)2,m=1,2,…,Q,α=diag(αm).
  

定义简支梁的各阶模态广义坐标、非线性振子

振动位移向量为待求未知向量X=[qT,u-*n ]T,定义

时间变量τ=ΩT,则式(10)和式(11)写为矩阵方程:
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 Ω2M
-
X
··
+ΩC

-
X
·
+K

-
X+K

-
n(ΦX)2X =F

-
cosτ

 

(12)
其中

M
-

=
In+1

ε*
n

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

 

(13)

ε*
n =

ε*
1 0

⋱

0 ε*
N*

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

 

(14)

C
-
=2σ

In

0N*×N*

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 +

 2ξ*
1ΦT

1Φ1+…+2ξ*
nΦT

nΦn
 (15)

K
-
=

α2

0N*×N*

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 +k

-*
1ΦT

1Φ1+…+k
-*
nΦT

nΦn
 

(16)

K
-

n =k
-*
3nΦT

nΦn (17)

F
-
=

ΦT
F

0N*×1

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 F0

 (18)

Φn =[ΦC,En]
 

(19)
其中,En 为第n 个元素为-1、其余元素为0的向

量,对应非线性振子,维度为1×N*.
  

增量谐波平衡法第一步为New-Raphson增量

过程,假设X0、Ω0 是矩阵方程(12)在某一时刻的

解,则其邻近点状态可以用增量形式表示为:

X=X0+ΔX,Ω=Ω0+ΔΩ (20)
  

将式(20)代入式(12)中进行泰勒展开,省略关

于增量的高阶小项,可得增量方程:

Ω2
0M

-
ΔX
··

+Ω0C
-
ΔX
·
+(K

-
+3K

-
n)ΔX

 =R-(2ω0M
-
X
··

0+CX
·

0)ΔΩ (21)

R=F
-
cosτ-(Ω2

0M
-
X
··

0+Ω0C
-
X
·

0+K
-
X0+K

-
nX0)

 

(22)

X0=[qT
0,u-*n0]T,ΔX=[ΔqT

0,Δu-*n ]T
 

(23)
  

增量谐波平衡法的第二步为Ritz-Galerkin谐

波平衡过程,假设矩阵方程(12)的稳态周期解可采

用一组有限项谐波叠加的形式近似表示,并具有如

下傅里叶级数形式:

Xk =∑
Nc

k=1
am(2k-1)cos(2k-1)τ+

 ∑
Ns

k=1
bm(2k-1)sin(2k-1)τ=CsAm

 (24)

ΔXk =∑
Nc

k=1
Δam(2k-1)cos(2k-1)τ+

 ∑
Ns

k=1
Δbm(2k-1)sin(2k-1)τ=CsAm

 (25)

其中,Nc、Ns 分别为余弦谐波与正弦谐波的截断

阶数,Cs 为谐波矩阵,Am 为谐波的傅里叶系数矩

阵,進Am 为谐波增量的傅里叶系数矩阵,分别为:

Cs=[cosτ,cos3τ,…,sinτ,sin3τ]
 

(26)

Am =[am1,…,am(2Ns-1)
,bm1,…,bm(2Ns-1)

]T
 

(27)

ΔAm =[Δam1,…,Δam(2Ns-1)
,Δbm1,…,Δbm(2Ns-1)

]T
 

(28)

  

令A =[A1,…,AQ]T;ΔA =[ΔA1,…,ΔAQ]T;S=
diag[Cs,…,Cs],Cs 为矩阵S 的对角线元素,共Q
个Cs.系统的解以及解的增量可以表示为:

X=SA,
  

ΔX=SΔA (29)
  

将式(29)代入增量方程(12)中,并在一个时间

周期内运用Garlerkin积分过程,可得到关于增量

ΔA 和频率增量Δω 的线性代数方程组:

KmcΔA=R-RmcΔΩ
 

(30)

其中

Kmc=∫
2π

0
ST[Ω2

0M
-
S
··
+Ω0C

-
S
·
+(K

-
+3K

-
n)S]dτ

(31)

R=∫
2π

0
ST{F

-
cosτ-[Ω2

0M
-
S
··
+Ω0C

-
S
·
+

 (K
-
+K

-
n)S]}dτA (32)

Rmc=∫
2π

0
ST(2Ω0MS

··
+CS

·
)dτA

 

(33)
  

对方程式(30)进行求解通常采用的是 New-
ton-Raphson迭代法近似数值求解,预先对ΔΩ 进

行取值,此时迭代方程中只有ΔA 和A0 是未知的,

对ΔA 假定一个初始值,通过判定R 是否符合容差

需求,来确定此时A0是否为方程的解,即‖R‖∞ <
ε0,其中ε0 为容差.若R 不满足判定条件,使A0=
A0+ΔA 更新,再次通过判别式判定R 是否符合容

差条件,不断重复以上过程直至R 符合判定条件,

即可计算得到方程的解A.利用Newton-Raphson
迭代法对非线性方程求解过程中发现,刚度矩阵

K
-

mc或R
-

mc易转变为奇异或者病态矩阵,此时New-
ton-Raphson迭代法难以收敛而失效.为优化这一

过程,可将增量谐波平衡法结合弧长延拓法对方程

进行求解,利用同伦思想通过引入弧长参数Δsi 作

为辅助增量迭代求解[17].对于一条完整的解曲线

而言,由于弧长是单调连续变化的,因此该法能够

04
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有效通过解曲线的奇异点,从而达到自动追踪解响

应的目的.利用Newton-Raphson迭代法首先求得

4个初始解,分别记为x0、x1、x2、x3,则下一个点

x4 可通过弧长增量Δs进行预报,若在xi 处弧长

状态量为υi ,可记υ0=0、υ1=s1、υ2=υ1+s2、υ3

=υ2+s3、υ4=υ3+Δs,那么x4 可按照以下三次外

插公式计算:

x4=∑
3

i=0
∏
3

j≠i

v4-vj

vi-vj  xi (34)

其中

si= xi+1-xi = ∑
Nf+1

j=1

[xi+1(j)-xi(j)]2

(35)

式中,Nf 为式(27)的总自由度数,Nf=2(Nc+
Ns).

  

计算得到式(30)的解后,利用Floquet理论对

解的稳定性进行判定,假设q0 为系统某一精确周

期解,那么q0 应满足平衡点条件:

ω2Mq
··
0+ωC0q

·
+[K+KN(q0)]q0=F

-
cosτ

 

(36)

  

考虑外界扰动因素在q0 附近产生了一定的偏

移量Δq,记

q=q0+Δq
 

(37)
  

将式(37)代入到式(30)中,忽略关于Δq 的高

阶小量,化简可得到以Δq 为未知量的线性化扰动

方程

ω2MΔq
··
+ωCΔq

·
+[K+3KN(q0)]Δq=0

(38)

  

根据线性化稳定性理论,周期解q0 的局部稳

定性可以转化为其附近扰动方程(38)解的稳定性.
进一步将式(38)写成状态方程组形式

Y
·
=Q(τ)Y

 

(39)

其中,Y= [Δq,Δq
·],Q(τ)=

0 I

Q21 -(1/ω)M-1C
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

Q21=-
1
ω2M

-1[K+3KN(q0)].
  

由于存在Q(τ)=Q(τ+T0),根据线性微分方

程组基本理论,则Y(τ)与Y(τ+T0)与满足映射

关系

Y(τ+T0)=PY(τ)
 

(40)

其中,P 为非奇异常值转移矩阵.用Floquet理论

判断周期解的稳定性时,如果转移矩阵的所有特征

根的模值均小于1,则周期解是渐近稳定的,否则

为不稳定.
  

增量谐波平衡法的计算精度取决于预设周期

解的谐波项数,取谐波截断阶数为3时,结合式

(24),则式(12)解的表达式可写为:

qm =am1cos(τ)+am3cos(3τ)+
 bm1sin(τ)+bm3sin(3τ)

u-*n =a*
n1cos(τ)+a*

n3cos(3τ)+

 b*
n1sin(τ)+b*

n3sin(3τ)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

 

(41)

其中τ=ωt,amp、bmp、a*
np、b*

np 为待求谐波系数,m
为简支梁参与计算的模态阶数,取值为1-Q;n 为

非线性振子编号;p 取值为1和3分别代表一阶和

三阶谐波项的系数.
  

已知简支梁横向振动位移可由振型叠加的形

式表示,即:w-(x-,T)=∑
Q

m=1
Φm(x-)qm(T),结合式

(41)可将简支梁横向振动位移进一步写为:

w-(x-,T)=∑
Q

m=1

[Φm(x-)am1cos(τ)+

 Φm(x-)am3cos(3τ)+Φm(x-)bm1sin(τ)+

 Φm(x-)bm3sin(3τ)]
 

(42)
  

求得简支梁表面坐标x- 处无量纲横向振动位

移结果:

w- =∑
Q

m=1
Φm(x-) a2

m1+a2
m3+b2m1+b2m3  

(43)

2 非线性振子对简支梁振动特性的影响
  

基于弧长延拓法和增量谐波平衡法,研究非线

性振子对简支梁的影响,由矩阵方程(12)可以得到

非线性振子和简支梁的耦合振动方程,通过迭代计

算,可以得到耦合方程的近似周期解.以此为基础,

分析非线性振子参数对简支梁横向振动特性的影

响规律,给出参与计算分析的具体案例,简支梁在

幅值为12.87
 

N激励力作用下发生振动,激励点位

置为x0=0.3
 

m,振动分析点位置为xc=0.7
 

m,

简支梁和非线性振子各关键参数如表1和表2所

示.将表1和表2所示参数依据式(4)进行无量纲

变换可得无量纲参数如下:ε*
n =0.1、σ=0.1,ξ*

n =

0.1、k
-*
1n =0、k

-*
3n =30、x- *n =0.7、x-c =0.7、x-F =

0.3(力的作用位置)、F0=5.分别利用增量谐波平

衡法(IHB方法)和龙格库塔法(R-K方法)计算含

14
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单个非线性振子简支梁上坐标x- =x-c 处的频率响

应曲线以验证解的准确性,再考虑未附加振子时简

支梁上相同坐标位置处频率响应结果,如图2所

示.图2中黑色实线为未附加振子时简支梁的幅频

特性曲线,纵坐标表示梁上x-c 位置处的无量纲横

向振动位移,可由式(43)计算得到,记为 w-c .

表1 简支梁的参数

Table
 

1 Parameters
 

of
 

the
 

simply
 

supported
 

beam

简支梁参数 符号/单位 数值

长度 L
 

/m 1

截面宽度 B/m 0.020

截面高度 H
 

/m 0.002

截面积 Ab
 /m2 4×10-5

密度 ρ
 

/(kg/m3) 7930

阻尼系数 Cb /(N·s/m) 0.18

惯性矩 I
 

/(m4) 1.33×10-11

弹性模量 E
 

/Pa 1.93×1011

表2 非线性振子的参数

Table
 

2 Parameters
 

of
 

the
 

nonlinear
 

resonator

非线性振子参数 符号/单位 数值

质量
 

m*
n/kg 0.0317

线性刚度系数 k*
1n

 /(N/m) 0

三次非线性刚度系数
 

k*
3n/(N/m) 77.20

阻尼系数
 

c*n/(N·s/m) 0.18

安装位置
 

x*
n/m 0.7

图2 附加单个非线性振子和无振子时简支梁表面坐标处
幅频特性曲线

Fig.2 Amplitude-frequency
 

curves
 

at
 

the
 

coordinate
  

on
 

the
 

surface
 

of
 

a
 

simply
 

supported
 

beam
 

with
 

a
 

single
 

nonlinear
 

resonator
 

and
 

no
 

resonator

如图2所示,在x-F=0.3位置处的简谐激励力

作用下,简支梁前两阶模态被激发出来,其固有频

率Ω分别为9.87和39.48。为便于后续分析,将简

支梁被激发的前两阶共振峰值称为其第一共振峰

和第二共振峰。附加非线性振子后,简支梁在第一

共振峰处(Ω=9.87)的无量纲位移 w-c 由3.30
降低至0.26,降低了92.12%;简支梁在第二共振

峰处(Ω=39.48)的无量纲位移 w-c 由0.97降低

至0.40,降低了58.76%,值得注意的是在简支梁

上附加非线性振子后抹平了第一共振峰处的振动

响应幅值,且未引起新的反共振峰.此外,由增量谐

波平衡法和龙格库塔法计算得到的简支梁的幅频

响应结果表现出相似的规律,且在0~50无量纲频

段平均误差约0.06,吻合度较好,进一步验证了论

文所提非线性方程求解方法的正确性.
下面重点研究非线性振子的非线性刚度、线性

刚度、质量比、阻尼比及布设位置对简支梁横向振

动特性的影响.基于表2中非线性振子的初始计算

参数,首先分析非线性刚度k
-*
3n 的影响,计算得到

初始参数下(无量纲非线性刚度k
-*
3n =30)简支梁

横向振动的稳态响应,随后将k
-*
3n 调整为30、100、

500、1000、10
 

000,图3给出了不同非线性刚度下

简支梁上坐标x- =x-c 处横向振动位移的幅频特性

曲线.

图3 不同非线性振子的非线性刚度下简支梁幅频特性曲线

Fig.3 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

nonlinear
 

resonators
 

with
 

nonlinear
 

stiffnesses
  

由图3可知,不同非线性刚度使得简支梁在不

同激励频率处出现了非线性特征,定义该激励频率

为非线性刚度作用频率.当非线性刚度值增大时,
其作用频率向高频方向移动.在0~50无量纲频率

范围内,简支梁前两阶共振模态被激发出来,当非

线性刚度取值k
-*
3n =30时,其主要在第一阶模态

(Ω=9.87)附近发挥抑制作用,简支梁横向位移由

3.30降低至0.36,降幅达87.5%,且未引入新的

反共振峰;简支梁第二共振峰幅值由0.97降低至

24
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0.41,降低了57.73%.随着非线性刚度提升至

100~10
 

000区间,简支梁第一阶模态处开始出现

新的振动响应峰值,k
-*
3n =100时第一共振峰由

k
-*
3n=30的0.36增大至2.80;增大非线性刚度,其

作用频率延伸至第二阶模态区域,导致该模态共振

峰出现非线性特征而向右侧偏斜,减振效果增强

(如k
-*
3n=10

 

000时,简支梁第二共振峰由0.98降

低至0.062),同时简支梁第一共振峰值增大.值得

注意的是,仅通过调节非线性刚度参数无法实现全

频域振动抑制,实际减振设计中需优先明确目标减

振频段、设计可激发的最优非线性刚度参数,同时

协同考虑线性刚度等其他参数的综合影响.
  

由图3可知,非线性刚度k
-*
3n 取值10

 

000时,

简支梁横向振动位移的幅频特性曲线表现出复杂

的非线性特征,为进一步验证增量谐波平衡法

(IHB方法)对于求解结构复杂非线性的正确性,再
次利用龙格库塔法(R-K方法)对理论求解结果进

行验证,计算k
-*
3n =10

 

000时简支梁横向振动位移

响应结果对比如图4所示.
由图4可知,增量谐波平衡法和龙格库塔法在

解的稳定区域表现出良好的一致性,验证了论文中

增量谐波平衡法对于处理结构复杂非线性的可行

性以及求解结果正确性.

图4 k
-*
3n =10

 

000时简支梁横向振动位移的增量谐波平衡法
(IHB方法)和龙格库塔法(R-K方法)求解结果

Fig.4 The
 

results
 

of
 

the
 

increment
 

harmonic
 

balance
 

method
 

(IHB
 

method)
 

and
 

the
 

Runge-Kutta
 

method
 

(R-K
 

method)
 

for
 

the
 

transverse
 

vibration
 

displacement
 

of
 

the
 

simply
 

supported
 

beam
 

when
  

k
-*
3n =10

 

000

图4中,非线性刚度k
-*
3n 取值30时,简支梁在

一阶模态频率处(Ω=9.8附近)横向振动位移|w-c|
受到削弱且未引入新的峰值,此时简支梁的振动特

性得到优化,图5给出了简支梁和非线性振子的时

域、相图、庞加莱截面(红色标记)及快速傅里叶变

换(FFT)频谱.如图5所示,在简谐激励力作用下,

简支梁和非线性振子的时域响应均表现出周期性

振荡,且振子振动位移大于简支梁的振动位移;简
支梁和非线性振子的相图均为闭合杂乱曲线,同时

庞加莱截面呈现出各点离散分布特征,这意味着非

线性振子作用频率处,简支梁和非线性振子进入混

沌运动状态;此外,频谱结果表明,简支梁和非线性

振子动态响应行为均以激励频率(Ω=9.8)为主

频,并存在各级次频谐波成分.

图5 简支梁与非线性振子的动态响应行为,k
-*
3n =30、Ω =9.8

Fig.5 Dynamic
 

response
 

behavior
 

of
 

the
 

simply
 

supported
 

beam
 

and
 

the
 

nonlinear
 

oscillator,
 

k
-*
3n =30、Ω =9.8

随着非线性刚度k
-*
3n 增大至100~10

 

000范围

内,其发挥作用的主导频率逐渐升高,简支梁一阶

模态频率处共振峰值增大,且作用频率处出现分岔

非线性特征,致使简支梁横向振动位移增大,在k
-*
3n

取值10
 

000时,于 Ω=36.24处简支梁振幅由
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0.04增大至1.17.原因在于此频率位置可能引起

非线性振子复杂的非线性动态行为,从而增大了与

简支梁的耦合作用,引起简支梁横向振动位移增

大.图6给出了k
-*
3n =10

 

000、Ω=36.24时简支梁

以及非线性振子的时域、相图、庞加莱截面(红色标

记)及FFT频谱.图中简支梁横向振动位移幅值为

0.0353,大于振子位移幅值0.0067,结合相图以及

庞加莱截面结果可得,简支梁和非线性振子均为周

期运动,具有稳定的响应结果.频谱结果中,简支梁

频谱仅包含Ω=36.24,非线性振子除Ω=36.24
外还显示其三倍频谱,即Ω=108.72.

图6 简支梁与非线性振子的动态响应行为,

k
-*
3n =10

 

000、Ω =36.24
Fig.6 Dynamic

 

response
 

behavior
 

of
 

the
 

simply
 

supported
 

beam
 

and
 

the
 

nonlinear
 

oscillator,
 

k
-*
3n =10

 

000、Ω =36.24
     

不同非线性刚度对简支梁振动特性影响作用

频率不同,在非线性振子作用频率处其往往表现出

复杂的非线性特征,具有以某频率为主导其余次频

谐波伴随的宽频响应.接着,研究线性刚度对简支

梁横向振动特性的影响,在非线性刚度研究基础

上,针对简支梁第一共振峰展开控制研究,取非线

性刚度k
-*
3n 为30,并考虑非线性振子的初始计算线

性刚度k
-*
1n 为0,减少或增大非线性振子的线性刚

度数值,k
-*
1n 分别取值为-20、-10、-5、0、5、10、

20,图7给出了附加不同线性刚度非线性振子时简

支梁坐标x-=x-c 处横向振动位移幅频响应结果.

图7 不同非线性振子的线性刚度下简支梁幅频特性曲线

Fig.7 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

nonlinear
 

resonator
 

linear
 

stiffnesses
    

由图7可知,非线性振子的线性刚度取负值

时,非线性振子对简支梁的作用主要体现在对简支

梁第一共振峰值的抑制.此时简支梁横向振动位移

逐步显现分岔等非线性特征,且并未引起新的反共

振峰.随着非线性振子负刚度的降低,对简支梁第

一共振峰幅值的抑制作用逐渐减弱,简支梁一阶模

态处横向振动位移峰值|w-c|由k
-*
1n=0时的0.36

升高至k
-*
1n =-20时的1.35;非线性振子线性刚

度取正值时,随着线性刚度的增大,减振频率Ω 由

11.15增大至13.91和20.35,且在减振频率右侧

引出新的反共振峰,减振频率处简支梁横向振动位

移|w-c|由0.11降低至0.03和0.0075,对简支梁

第二共振峰抑制作用则随线性刚度增大持续增强,
该现象揭示了线性刚度对简支梁动力学振动特性

的差异化影响.
     

非线性振子的线性刚度取负值能够抑制简支

梁的横向振动位移且不会引起新的反共振峰,而正

的线性刚度决定了振子的减振频率.在进行减振设

计中,附加振子的质量是决定其能否实际应用的关

键.因此,本节针对非线性振子的质量比继续开展

振动控制研究,取非线性刚度k
-*
3n 和线性刚度k

-*
1n
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的初始计算参数分别为30和0,分析质量比ε*
n 取

值为0.01、0.05、0.10、0.15、0.20、0.25时简支梁

的横向振动特性,图8所示为附加具有不同质量比

的非线性振子时简支梁横向振动幅频特性曲线.
由图8可知,质量比取值ε*

n =0.01时,简支梁

第一共振峰值|w-c| 从3.30降至2.72,降幅

17.60%,而对第二共振峰的衰减更显著,由0.98
降低至0.30,降低了69.39%,此时简支梁振动响

应具有稳定峰值.随着非线性振子质量比的增加,

简支梁第一共振峰值|w-c|出现先锐减后缓增的

演变规律,其峰值最小值出现在ε*
n =0.1时,振幅

衰减幅度87.50%,但同参数下第二共振峰幅值升

至1.15,产生不利幅值增强效应.当质量比ε*
n >0.

1后,简支梁第一共振峰出现非线性振动特性,共
振峰向右侧偏斜,且幅值增大,而第二共振峰随质

量比增大逐步衰减.研究表明,质量比对简支梁多

模态可产生不同的调控作用,过大的附加质量虽可

增强简支梁第二共振峰的减振效果,却会削弱第一

共振峰的幅值衰减.
     

接着探究非线性振子的阻尼比对简支梁横向

振动特性的影响,确定非线性振子的初始计算参数

如下:非线性刚度为k
-*
3n =30、线性刚度为k

-*
1n =0、

质量比ε=0.1,考虑非线性振子的初始计算阻尼

比为ξ*
n =0.01,逐渐增大阻尼比数值,ξ*

n 分别取

值为0.01、0.05、0.10、0.15、1、10参与计算,附加

不同阻尼比非线性振子时简支梁上坐标x-=x-c 处

横向振动位移幅频特性曲线如图9所示.
   

由图9可 知,当 阻 尼 比 在 较 小 范 围(ξ*
n =

0.01、.05)取值时,简支梁在Ω=9.06处呈现分岔

非线性行为,第一共振峰幅值|w-c|出现显著跳跃

式衰减,衰减前最大幅值约3.09,接近无振子简支

梁振幅3.30,且简支梁第二共振峰向右侧偏斜.随
着阻尼比ξ*

n 增大至0.10和0.15,简支梁第一共

振峰 幅 值 最 小,分 别 为0.30和0.31,降 幅 为

90.94%和90.63%.当振子阻尼比增大至1.0以

上时,简支梁振动响应恢复线性动力学特征,整体

减振效果减弱,简支梁第二共振峰向低频移动,且
阻尼比ξ*

n =10时简支梁横向振动位移要大于阻

尼比ξ*
n =1时.阻尼比过小会引起简支梁横向振

动位移的异常突增,影响简支梁横向振动特性,而
阻尼比过大会使减振效果变差且改变简支梁固有

频率位置.

研究非线性振子的布设位置对简支梁横向振

动特性的影响,确定非线性刚度为k
-*
3n =30、线性

刚度为k
-*
1n =0、质量比ε*

n =0.1、阻尼比ξ*
n =0.1,

非线性振子的无量纲安装位置x-*n 在0.1~0.9范

围内变化,计算不同非线性振子布设位置下简支梁

上坐标x-=x-c 处横向振动位移幅频特性曲线如图

10所示.力的作用位置为x-F=0.7,测试点位置

x-c=0.7.

图8 不同非线性振子的质量比下简支梁幅频特性曲线

Fig.8 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

nonlinear
 

resonator
 

mass
 

ratios

图9 不同非线性振子的阻尼比下简支梁幅频特性曲线

Fig.9 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

nonlinear
 

resonator
 

damping
 

ratios

图10 不同非线性振子的布设位置下简支梁幅频特性曲线

Fig.10 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

nonlinear
 

resonator
 

locations
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由图10分析可知,随着非线性振子布设位置

的变化简支梁的幅频特性曲线相对于x-*n =0.5基

本上呈现出对称状态,简支梁的第一共振峰和第二

共振峰均以x-*n 取值为0.5时幅值为极值点对称

变化.随着非线性振子布设位置由x-*n =0.1逐渐

过渡到x-*n =0.5时,简支梁的第一共振峰分岔行

为明显,出现不稳定解区域且幅值减小,在x-*n =0.5
时幅值|w-c|变化至最小,|w-c|=0.26时,降低了

92.12%.此外,简支梁第二共振峰随非线性振子安

装位置变化,在x-*n =0.5时幅值升至最大,具体幅

值为|w-c|=1.15,大于无振子简支梁的振幅0.98.
  

最后,考虑在简支梁上附加多个非线性振子,

研究非线性振子的数量对简支梁横向振动特性的

影响,假设每个非线性振子的参数均相同,其无量

纲参数具体取值为:质量比ε*
n =0.1、阻尼比ξ*

n =

0.1、线性刚度k
-*
1n =0、非线性刚度k

-*
3n =30,各非

线性振子在简支梁上等间隔布设,图11给出了含

不同数量非线性振子简支梁横向振动位移的幅频

特性曲线.
  

由图11可知,在非线性振子参数相同的前提

下,非线性振子数量的变化主要对简支梁共振峰幅

值产生影响.随着非线性振子数量的增加,对简支

梁第一共振峰值减振效果先增强后减弱,在 N*=
3时减振效果最好,无量纲最大减振量为3.07,同
时含非线性振子简支梁振动响应的非线性行为更

加显著.此外,随着非线性振子数量的增加,对简支

梁第二共振峰值减振效果逐渐增强,无量纲最大减

振量由 N* =1时的0.58提升至 N* =5时的

0.82.

图11 不同非线性振子的数量下简支梁幅频特性曲线

Fig.11 Amplitude-frequency
 

curves
 

of
 

the
 

simply
 

supported
 

beam
 

under
 

different
 

numbers
 

of
 

nonlinear
 

resonators

3 结论
  

针对线性振子减振频带窄、频带两侧共振峰值

大等问题,在简支梁结构中引入非线性振子以优化

其减振性能,开展了含非线性振子简支梁横向振动

特性研究,具体工作如下:
  

(1)建立了有限长非线性局域共振梁的动力学

模型,得到了系统非线性耦合振动方程,利用增量

谐波平衡法和弧长延拓法推导出了梁结构横向振

动位移的理论解,并结合Floquet理论给出了解的

稳定性判定方法.非线性振子的线性刚度k
-*
1n 和非

线性刚度k
-*
3n 分别取值为0和30时,简支梁一阶模

态无 量 纲 峰 值 由 3.30 降 低 至 0.26,降 低 了

92.12%,且未引入新的共振峰.
  

(2)分析了非线性振子的非线性刚度、线性刚

度、质量比、阻尼比、安装位置和数量对简支梁横向

振动特性的影响.非线性刚度和线性刚度决定了非

线性振子发挥作用的频率位置,且非线性振子中若

存在线性刚度易在减振频率处引入新的共振峰.同
时,非线性振子在某些参数取值下使得简支梁的横

向振动出现分岔、混沌等非线性动力学行为,从而

影响梁结构的振动稳定性,理论研究结果可为非线

性结构的合理设计提供参考.
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