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摘要 本研究针对传统的反向传播(BP)神经网络比例积分微分(PID)算法存在的波动振荡、容易发散的问

题,提出改进方法.首先采用 He初始化方法对神经网络进行初始化,并对学习率进行衰减,同时对算法梯度

进行裁剪.然后,在此基础上继续对比研究不同激活函数(Sigmoid、Tanh、ReLU和Leaky
 

ReLU)和不同平滑

技术(指数平滑、移动平均、Savitzky-Golay滤波器和Butterworth滤波器)对算法性能的影响.最后,采用极

端激励对平滑器的鲁棒性进行测试.结果表明:相较于传统的Sigmoid激活函数,使用ReLU、Leaky
 

ReLU
和Tanh激活函数具有更强的稳定性,并且Leaky

 

ReLU激活函数综合性能最好;在平滑效果方面,指数平

滑和Savitzky-Golay滤波器具有更明显的优势,更适合于需要快速响应和精确平滑的应用领域;平滑技术可

以使算法更快恢复稳定,提高算法稳定性.
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Abstract In
 

this
 

study,
 

an
 

improved
 

method
 

is
 

proposed
 

to
 

solve
 

the
 

problems
 

of
 

fluctuating
 

oscillation
 

and
 

easy
 

divergence
 

of
 

the
 

traditional
 

back
 

propagation
 

(BP)
 

neural
 

network
 

proportional
 

integral
 

differ-
ential

 

(PID)
 

algorithm.
 

Firstly,
 

the
 

He
 

initialization
 

method
 

is
 

used
 

to
 

initialize
 

the
 

neural
 

network,
 

the
 

learning
 

rate
 

is
 

attenuated,
 

and
 

the
 

algorithm
 

gradient
 

is
 

clipped.
 

Then,
 

on
 

this
 

basis,
 

the
 

effects
 

of
 

dif-
ferent

 

activation
 

functions
 

(Sigmoid,
 

Tanh,
 

ReLU
 

and
 

Leaky
 

ReLU)
 

and
 

different
 

smoothing
 

techniques
 

(exponential
 

smoothing,
 

moving
 

average,
 

Savitzky-Golay
 

filter
 

and
 

Butterworth
 

filter)
 

on
 

the
 

perform-
ance

 

of
 

the
 

algorithm
 

are
 

further
 

compared.
  

Finally,
 

the
 

robustness
 

of
 

the
 

smoother
 

is
 

tested
 

by
 

extreme
 

disturbance.
 

The
 

results
 

show
 

that
 

compared
 

with
 

the
 

traditional
 

Sigmoid
 

activation
 

function,
 

the
 

ReLU,
 

Leaky
 

ReLU
 

and
 

Tanh
 

activation
 

functions
 

have
 

stronger
 

stability,
 

and
 

the
 

Leaky
 

ReLU
 

activa-
tion

 

function
 

has
 

the
 

best
 

comprehensive
 

performance.
 

In
 

terms
 

of
 

smoothing
 

effect,
 

exponential
 

smoot-
hing

 

and
 

Savitzky-Golay
 

filters
 

have
 

more
 

obvious
 

advantages
 

and
 

are
 

more
 

suitable
 

for
 

applications
 

that
 

require
 

fast
 

response
 

and
 

precise
 

smoothing.
 

The
 

smoothing
 

techniques
 

can
 

make
 

the
 

algorithm
 

recover
 

faster
 

and
 

improve
 

the
 

stability
 

of
 

the
 

algorithm.
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引言
    

传统的比例积分微分(PID)控制算法因其强大

的适应性和易于调整优化的特点使其成为自动控制

领域中应用最广泛的反馈控制算法之一[1].该算法

通过计算系统的误差(即期望值与实际输出之间的

差异)来生成控制信号,进而调整系统行为以实现稳

定控制.但是PID控制算法也存在明显的局限性,主
要包括缺乏预测能力以及参数调整的复杂性[2].

为了克服这些限制,研究者们开始探索使用先

进的智能控制算法,如模糊控制PID[3]、神经网络

PID[3]和遗传算法PID[4]等,这些算法强大的非线

性拟合能力和自我学习能力[5,6]能够很好地弥补传

统PID控制算法的缺陷[7].反向传播(BP)神经网

络PID控制[8-9]是一种先进的控制方法,它将传统

的PID控制器与人工神经网络的自适应能力相结

合.然而,传统的BP神经网络在训练过程中存在

很多问题,如网络层数、神经元个数的选择缺乏理

论指导,以及学习速度慢、波动振荡[10]等问题.针
对上述传统BP神经网络算法存在的波动振荡和

容易发散的问题,研究人员已提出了各种改进的

BP神经网络控制算法:文献[11]提出了一种增加

多个动量项的方法,以加快学习速度并保持稳定

性;文献[12]通过优化权值修正公式和学习速率来

解决算法收敛速度慢的问题;文献[13]提出了一种

自适应调整动量系数的改进算法;文献[14]通过引

入动量项和变步长法来提高算法的收敛速度;文献

[15]利用附加动量项增加算法的稳定性.以上优化

改进主要集中在动态调整学习率[12]和增加动量

项[11,13-15],但在实践应用中,这样的改进计算效果

并不理想,波动振荡仍然存在.因此,本研究旨在通

过引入平滑器、改变激活函数,采用更稳定的初始化

方法,并优化学习率,以实现消除波动振荡,降低发

散可能性的目的.

1 基于BP神经网络的PID控制算法的改

进方法

  

神经网络的训练性能取决于参数设置和算法

选择.本章首先对基于BP神经网络的PID控制算

法进行参数优化,参数优化的主要措施包括:采用

He初始化方法对神经网络进行初始化;对学习率

进行衰减;对算法梯度进行裁剪.然后在上述参数

优化 的 基 础 上,重 点 讨 论 探 讨 Sigmoid、Tanh、

ReLU和Leaky
 

ReLU函数作为隐含层激活函数

的性能表现,通过对比这4种激活函数的优势和局

限性,为后续的仿真实验提供理论依据;此外,为了

提高神经网络输出的稳定性,引入4种平滑器,分
别为指数平滑、移动平滑、Savitzky-Golay滤波器

和Butterworth滤波器,分别对比其平滑效果,以
期能够减小波动振荡.

1.1 参数优化

1.1.1 学习率衰减
  

在赋予各层权值对应的学习速率后,每次迭代

更新权值矩阵时,学习率均乘以预设的学习衰减因

子
 

β
[16],实现学习率的递减.数学表达式为:

η⇒βη (1)
其中:η为当前的学习率,β为学习衰减因子.
1.1.2 He初始化

  

采用标准正态分布随机生成权重矩阵,权重

W 的初始值从均值为0,方差为2/(nin+nout)的正

态分布中抽取,即:

W ~N 0, 2
nin+nout  (2)

其中:nin 为前一层的神经元数量,nout 为当前层的

神经元数量,W 为初始权值矩阵.
1.1.3 梯度裁剪

  

本文引入一种梯度裁剪[18]方法,通过设置梯

度阈值来限制梯度的大小,如果梯度超过这个阈

值,就将其强制裁剪至该范围内,实现过程如下:

gt=min[max(gt-1,-C),C] (3)
其中:C 为梯度阈值,gt-1 为裁剪前的梯度,gt 为

裁剪后的梯度.
  

本研究针对参数优化引入3种优化策略:学习

率衰减、He初始化和梯度裁剪,后续的研究都将在

这些优化策略基础上展开.

1.2 激活函数
  

本节重点探讨Sigmoid、Tanh、ReLU和Leaky
 

ReLU函数4种激活函数作为隐含层激活函数的

性能表现,通过对比这4种激活函数的优势和局限

性,为后续的仿真实验提供理论依据.在PID控制

领域,控制信号通常需要被限制在特定的范围内以

确保系统的稳定性和响应性,Sigmoid函数能够确

保输出信号维持在这一预设范围内.因此在本文后

续的研究中,输出层的激活函数均使用Sigmoid函

11
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数,以实现对控制信号的有效调控.
1.2.1 Sigmoid函数

 

Sigmoid函数及其导函数表达式如下:

S(x)=
1

1+e-x
(4)

S
·
(x)=

e-x

(1+e-x)2
(5)

1.2.2 Tanh函数
  

Tanh函数表达式如下:

Tanh(x)=
ex -e-x

ex +e-x
(6)

1.2.3 ReLU函数
  

ReLU函数[19]表达式如下:

ReLU(x)=max(0,x) (7)

1.2.4 Leaky
 

ReLU函数
  

Leaky
 

ReLU函数[20]表达式如下:

Leaky
 

ReLU(x)=
x

 

, x>0
αx, x≤0 (8)

1.3 平滑器
  

梯度下降法的局限性[21]、不恰当的学习速率

和干扰噪声都会导致神经网络在最优解附近发生

振荡,无法稳定地收敛到最优解.通过应用平滑器,

可以降低这些波动,使得输出结果更加稳定,从而

提高控制的精确度和可靠性.现引入4种平滑器,

分别为指数平滑、移动平滑、Savitzky-Golay滤波

器和Butterworth滤波器.
1.3.1 指数平滑

指数平滑[21,22]是一种时间序列预测方法,它给

过去的观测值赋予指数递减的权重,其基本公式为:

St=αyt+(1-α)St-1 (9)

其中:St 为t时刻的平滑值,yt 为t时刻的实际观

测值,α为平滑因子,St-1 为前一时间的平滑值.
1.3.2 移动平滑

  

移动平滑是一种简单的数据平滑方法[23],通
过计算一定窗口内数据点的平均值来减少噪声和

波动,同时保留数据的趋势,其基本公式为:

St=∑
n

i=1
(yt-i+yt+i)+yt

2n+1
(10)

其中:n 为滑动窗口半径,yt 为t时刻的实际观测

值,为t时刻的平滑值.
1.3.3 Savitzky-Golay滤波器

  

Savitzky-Golay滤波器[24]基本公式为:

St=∑
n

k=0bnktk (11)

其中:n 为多项式的次数,bnk 为多项式的系数,可
以由最小二乘法求出.
1.3.4 Butterworth滤波器

  

Butterworth滤波器[25]基本公式为:

St=
1

1+
b
ωc  

2n
(12)

其中:b 为复频率变量ωc 是截止频率,n 是滤波器

的阶数.

1.4 算法原理

通过上述改进后的BP神经网络的PID控制

算法,其结构如图1所示.为了更好地贴近工程实

际,本文均采用在线平滑技术.具体步骤如下:
(1)确定参数,确定初始学习因子、学习率衰减

因子、各层神经元个数等参数;
(2)初始化,使用 He初始化方法初始化隐藏

层和输出层的权重;
(3)计算,计算隐藏层和输出层的输入和输出;
(4)输出,将输出的PID参数(即 Kp、Ki 和

Kd)输入PID控制器,PID控制器输出控制量;
(5)更新,计算并更新输出层和隐藏层权重系

数,并调节更新PID控制参数;
(6)平滑器实现,使用在线平滑技术对输出进

行平滑处理;
(7)循环,返回步骤1.

图1 改进后BP神经网络的PID控制系统结构简图

Fig.1 Schematic
 

diagram
 

of
 

PID
 

control
 

system
 

structure
 

of
 

improved
 

BP
 

neural
 

network

2 仿真分析
  

为了验证本文理论与方法的有效性,本节将进

行一系列仿真实验[26-28],以评估改进后的BP神经

网络PID控制算法的性能.本研究中所采取的非

线性仿真系统[29]模型,该模型能够模拟复杂系统

的动态行为:
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y(k)=
a(k)y(k-1)
1+y2(k-1)

+u(k-1) (13)

其中:a(t)=1.3(1-0.6e-0.2t).
  

具体 实 现 过 程 如 下:首 先,分 析 Sigmoid、

Tanh、ReLU和Leaky
 

ReLU函数作为隐含层激活

函数时系统性能的表现;然后,评估指数平滑、移动

平滑、Savitzky-Golay滤波器和Butterworth滤波

器4种平滑器对输出曲线平滑性能的影响;最后,

引入极端噪声干扰,对上述4种平滑器的鲁棒性进

行测试[30-32].

2.1 激活函数对比
  

本节通过改进的 BP神经网络 PID 控制器

(BP-PID)算法,研究不同激活函数对系统控制性

能的影响.在神经网络的运算中,隐含层神经元个

数、学习率、动量因子这三个参数对系统的运算性

能影响最显著,为确保研究结论的普适性和准确

性,现通过改变隐含层神经元个数N、学习率η、动
量因子α这三个参数,对8组不同的参数配置进行

仿真对比实验:(N1=9、N2=6;η=0.1、η2=0.4;

α1=0.5、α2=1).
  

设置算法的关键初始条件和参数.
2.1.1 网络结构

  

隐含层神经元数量:N1=9、N2=6;
  

输入层节点数:4[对应输入信号r(t)、系统输

出y(t)、误差e(t)以及偏置项];
  

输出层节点数:3(对应PID控制系统的3个参

数Kp、Ki 和Kd).
2.1.2 权重初始化

采用He初始化方法对权重进行初始化:
  

隐含层权重矩阵Wh 初始化为随机值,范围符

合 2/(nin+nout),其中nin=4和nout=9;
  

输出层权重矩阵W0 初始化为随机值,范围符

合 2/(nin+nout),其中nin=10和nout=3.
2.1.3 学习率与衰减因子

  

初始学习率η1=0.1,η2=0.4;
  

学习衰减因子β=0.999.
2.1.4 控制参数

  

动量因子α1=0.5,α2=1;
  

采样时间Ts=0.001.
2.1.5 数值稳定性措施

  

梯度裁剪阈值C=1;

2.1.6 训练迭代次数
  

训练过程共进行了T=5000步的迭代.
  

通过上述初始条件和参数设置,本文能够清晰

地展示不同激活函数在BP-PID控制器中的表现

差异,为算法实现提供明确指导,并为后续研究者

提供参考框架.
2.1.7 仿真对比实验

  

对8组不同的参数配置进行仿真对比实验:以
阶跃信号[33]为例,对Sigmoid、Tanh、ReLU和Leaky

 

ReLU
 

函数作为隐含层激活函数时系统性能的表

现进行对比.如图2所示,在改变了隐含层的激活

函数后,系统的振荡幅度得到了显著地减小.表1
对比了图2(a)中4种情况下系统响应的上升时

间、峰值时间和超调量.结果表明:相较于传统的

Sigmoid激活函数,使用 ReLU、Leaky
 

ReLU 和

Tanh激活函数具有更强的稳定性.其中,ReLU激

图2 不同参数下使用4种不同激活函数的系统输出曲线

Fig.2 System
 

output
 

curves
 

using
 

4
 

different
 

activation
 

functions
 

for
 

different
 

parameters
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表1 图2(a)中不同激活函数下的系统动态性能比较

Table
 

1 Comparison
 

of
 

the
 

dynamic
 

performance
 

of
 

the
 

system
 

under
 

different
 

activation
 

functions
 

in
 

figure
 

2(a)

激活函数类型 上升时间/s 峰值时间/s 超调量/%

ReLU 0.014 0.041 1.019

Leaky
 

ReLU 0.009 0.030 0.438

Tanh 0.001 0.004 58.609

Sigmoid 0.001 0.004 90.148

活函数在收敛速度上明显快于 Leaky
 

ReLU 和

Tanh激活函数,尽管ReLU激活函数自身存在局

部振荡.Leaky
 

ReLU激活函数综合了Sigmoid和

ReLU激活函数的优势与不足,在本文后续的研究

中,均使用Leaky
 

ReLU作为隐含层的激活函数.

2.2 平滑器对比
 

为了评估4种平滑器对系统输出稳定性的影

响,首先对算法参数进行设置(初始条件及参数设

置同2.1节),接着对各种平滑器的参数进行设置:

指数平滑的平滑因子α=0.1;移动平均滑动窗口

半径n=10;Savitzky-Golay滤波器的多项式的次

数n=3,窗口长度为21;Butterworth滤波器的复

频率变量b=1/t,截止频率ωc=10,滤波器的阶数

n=3.
为确保研究结论的一般性和准确性,对8组不

同的参数配置进行仿真对比实验:(N1=9、N2=
6;η1=0.1、η2=0.4;α1=0.5、α2=1).图3为不同

参数下使用4种平滑器的系统输出曲线.表2列出

了应用4种不同平滑器后系统响应的上升时间、峰
值时间和超调量[以图(a)为例].

图3 不同参数下使用4种平滑器的系统输出曲线

Fig.3 System
 

output
 

curves
 

using
 

4
 

smoothers
 

for
 

different
 

parameters
  

结果表明:在应用了4种平滑器后,系统的振

荡的问题得到了显著地解决.Savitzky-Golay滤波

器和移动平均比指数平均和Butterworth滤波器

的收敛速度更快,但移动平均存在局部振荡现象.
在平滑效果方面,指数平滑和Savitzky-Golay滤波

器具有更明显的优势,更适合于需要快速响应和精

确平滑的应用领域.
 

表2 图3(a)中系统应用不同平滑器后的动态性能比较

Table
 

2 Comparison
 

of
 

the
 

dynamic
 

performance
 

of
 

the
 

system
 

after
 

applying
 

different
 

smoothers
 

in
 

figure
 

3(a)

平滑器类型 上升时间/s 峰值时间/s 超调量/%

指数平滑 0.046 0.071 0.198

移动平滑 0.037 0.061 0.438

Savitzky-Golay 0.022 0.057 0.586

Butterworth 0.041 0.048 4.148

2.3 算法对比
  

现有的BP神经网络算法的改进措施主要有

两种:一种是添加动量项[29]的BP神经网络PID控

制算法(MBPPID),另一种是动态调整学习率[34]的

BP神经网络PID控制算法(VLBPPID).为了验证

本文算法的有效性,现将本文算法与现有的BP神

经网络算法进行对比实验.
  

首先对 MBPPID算法进行参数设置:动量因

子α1=0.5、动量因子α2=0.1;学习率η=0.1;隐
含层神经元数N=9;输入层节点数为4;输出层节

点数为3;采样时间Ts=0.001.
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接着对VLBPPID算法进行参数设置:初始学

习率η=0.1;动态学习阈值参数ξ1=0.04,ξ2=
0.05;隐含层神经元数 N=9;输入层节点数为4;

输出层节点数为3;采样时间Ts=0.001.
  

最后,本文算法对参数的设置同2.1节(隐含

层神经元数量:N=9,学习率η=0.1,动量因子

α=0.5),隐含层采用Leaky
 

ReLU激活函数,并采

用Savitzky-Golay平滑技术(同2.2节).最后在图

4展示了3种控制算法的输出曲线对比结果.从图

中可以明显看出,本文提出的改进算法在稳定性方

面相较于MBPPID和VLBPPID算法有显著提升.

图4 3种控制算法的输出曲线

Fig.4 Output
 

curves
 

of
 

the
 

three
 

control
 

algorithms

2.4 鲁棒性测试
  

为了评估系统在引入平滑器后对干扰的鲁棒

性,在0.3
 

s时刻对系统施加了一个大小为0.2,方
向为负的极端干扰信号.在此基础上,对指数平滑、

移动平均和Savitzky-Golay滤波器进行鲁棒性测

试.参数设置同2.1节,其中隐含层神经元数量 N
=9,学习率η=0.1,动量因子α=0.5.此外,平滑

器参数设置同2.2节.根据图5可知,在系统受到

干扰后,指数平滑、移动平均和Savitzky-Golay滤波

器均能迅速响应并趋于稳定.表明这些平滑器在面

图5 加入极端干扰后的系统输出曲线

Fig.5 System
 

output
 

curve
 

with
 

the
 

addition
 

of
 

extreme
 

interference

对干扰时的有效性和鲁棒性,能够在保持系统稳定

性方面发挥关键作用.观察局部放大图可以发现,

相较于其他3种平滑器,Butterworth滤波器在受

到极端干扰时的影响明显较小,具有更快的响应速

度而且能更快地趋于稳定.

3 结论
 

本文提出了一种基于改进BP神经网络的PID
参数自适应优化算法,并通过仿真实验验证了不同

激活函数和平滑器对系统性能的影响,得出以下

结论:
 

(1)Leaky
 

ReLU 在梯度消失抑制、鲁棒性及

收敛速度方面展现出综合优势.相较于Sigmoid/

Tanh,其正值区导数为1的特性加速了梯度更新;

负值区小斜率设计(α=0.01)则缓解了神经元抑制

问题,实现了动态响应与稳定性的平衡.
 

(2)Savitzky-Golay滤波器通过多项式拟合在

保留信号趋势的同时抑制高频噪声,适用于快速响

应场景;Butterworth滤波器凭借优化的通带-阻

带特性,在抗干扰与长期稳定性上表现更优.
 

(3)动态响应需求优先的场景推荐采用Leaky
 

ReLU与Savitzky-Golay滤波器组合;复杂噪声环

境下,建议选用Butterworth滤波器以提升鲁棒

性.两类方法的核心差异源于频谱处理机制:前者

注重局部特征提取,后者通过频率响应优化实现全

局稳定性.
  

综上所述,本文提出的改进BP神经网络PID
控制算法通过引入Leaky

 

ReLU激活函数和多种

平滑器,显著提升了系统的动态响应性能和稳定

性.这些改进不仅提高了控制精度,还为非线性复

杂系统的PID控制提供了一种新的解决方案.
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