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Adaptive Optimization of PID Control Parameters Based on BP Neural Network
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Abstract In this study, an improved method is proposed to solve the problems of fluctuating oscillation
and easy divergence of the traditional back propagation (BP) neural network proportional integral differ-
ential (PID) algorithm. Firstly, the He initialization method is used to initialize the neural network, the
learning rate is attenuated, and the algorithm gradient is clipped. Then, on this basis, the effects of dif-
ferent activation functions (Sigmoid, Tanh, RelLU and Leaky Rel.LU) and different smoothing techniques
(exponential smoothing, moving average, Savitzky-Golay filter and Butterworth filter) on the perform-
ance of the algorithm are further compared. Finally, the robustness of the smoother is tested by extreme
disturbance. The results show that compared with the traditional Sigmoid activation function, the
Rel.U, Leaky Rel.U and Tanh activation functions have stronger stability, and the Leaky Rel.U activa-
tion function has the best comprehensive performance. In terms of smoothing effect, exponential smoot-
hing and Savitzky-Golay filters have more obvious advantages and are more suitable for applications that
require fast response and precise smoothing. The smoothing techniques can make the algorithm recover

faster and improve the stability of the algorithm.
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