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Quasi-Zero Stiffness Vibration Isolation: An Implementation by
Curved Arch and Straight Beam

Shi Kuangwu Xu Zhenghao Wang Yong' Huang Zhilong

(Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China)

Abstract Most of the existing quasi-zero-stiffness vibration isolators are of complex configuration and
high cost. Aiming to these drawbacks, this work adopts a curved arch to providing quasi-linear negative
stiffness and a straight beam to providing quasi-linear positive stiffness; matching and combining the
curved arch and straight beam constitute a quasi-zero-stiffness vibration isolator with concise configura-
tion and cheap cost. In theory, by the energy method we derive the analytical formulas for designing the
stiffness of curved arch, straight beam and the combined system. In experiments, we obtain the force-
displacement relation from static testing which verifies the efficacy of the analytical formulas, and the

good isolation performance and some load adaptability from dynamic testing.
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Fig. 1 Quasi-zero-stiffness vibration isolation system:
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Fig. 3 Dimensionless load-displacement relation
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