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摘要 针对含裂纹齿轮传动系统的混沌动力学进行了分析,提出了一种混沌控制策略.首先建立含裂纹三

自由度齿轮系统模型,分析裂纹演变对啮合刚度的影响,进而分析了参数ω-ξ耦合作用下系统动力学响应

的变化规律,并画出系统参数平面上的运动分布图、位移幅值云图等,分析获取了混沌运动的参数分析判

据,同时通过多初值分岔图探究吸引子共存的规律.其次针对部分参数区间混沌发生的区域,基于极限学习

机(extreme
 

learning
 

machine,ELM)设计混沌控制器,构建了控制性能指标函数,利用混沌控制器输出微小

扰动施加于系统的可控参数ω 和ξ,将混沌运动控制为预期的周期运动,同时将基于精英选择策略的黏菌优

化算法(elite
 

selection
 

strategy
 

slime
 

mould
 

algorithm,ESMA)与ELM 相结合,优化混沌控制器的参数.然

后依据吸引子共存规律,通过力反馈控制,将系统稳定到位移幅值更小的周期轨道.最后通过仿真验证了所

提出控制策略的有效性.

关键词 齿轮系统, 混沌控制, 多稳态动力学, 极限学习机, 精英选择策略的黏菌优化算法
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Abstract The
 

chaotic
 

dynamics
 

of
 

a
 

crack-containing
 

gear
 

transmission
 

system
 

were
 

analyzed,
 

and
 

a
 

chaotic
 

control
 

strategy
 

was
 

proposed.
 

Firstly,
 

a
 

model
 

of
 

a
 

crack-containing
 

three-degree-of-freedom
 

gear
 

system
 

was
 

established
 

to
 

analyze
 

the
 

effect
 

of
 

crack
 

evolution
 

on
 

meshing
 

stiffness.
 

Subsequently,
 

the
 

change
 

rule
 

of
 

the
 

system
 

dynamics
 

response
 

under
 

the
 

action
 

of
 

parameter
 

ω-ξ
 

coupling
 

was
 

ana-
lyzed.

 

The
 

distribution
 

map
 

of
 

motion
 

on
 

the
 

parameter
 

plane
 

of
 

the
 

system,
 

the
 

displacement
 

amplitude
 

cloud
 

map,
 

and
 

so
 

on
 

were
 

drawn.
 

The
 

correlation
 

between
 

chaotic
 

motions
 

and
 

specific
 

parameter
 

con-
ditions

 

of
 

the
 

system
 

and
 

the
 

characteristics
 

of
 

their
 

manifestation
 

were
 

analyzed.
 

Secondly,
 

the
 

law
 

of
 

the
 

coexistence
 

of
 

attractors
 

was
 

investigated
 

through
 

the
 

multi-primary-value
 

bifurcation
 

map.
 

Aiming
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at
 

the
 

region
 

where
 

chaos
 

occurred
 

in
 

some
 

parameter
 

intervals,
 

a
 

chaotic
 

controller
 

was
 

designed
 

based
 

on
 

extreme
 

learning
 

machine
 

(ELM).
 

A
 

control
 

performance
 

index
 

function
 

was
 

constructed
 

to
 

control
 

the
 

chaotic
 

motion
 

into
 

the
 

expected
 

periodic
 

motion
 

by
 

using
 

the
 

output
 

of
 

the
 

chaotic
 

controller
 

to
 

out-
put

 

tiny
 

perturbations
 

applied
 

to
 

the
 

controllable
 

parameters
 

ω
 

and
 

ξ
 

of
 

the
 

system.
 

Meanwhile,
 

the
 

elite
 

selection
 

strategy
 

slime
 

mould
 

algorithm
 

(ESMA)
 

was
 

combined
 

with
 

ELM
 

to
 

optimize
 

the
 

parameters
 

of
 

the
 

chaotic
 

controller.
 

Additionally,
 

based
 

on
 

the
 

attractor
 

coexistence
 

law,
 

the
 

system
 

was
 

stabilized
 

to
 

a
 

periodic
 

orbit
 

with
 

a
 

smaller
 

displacement
 

amplitude
 

by
 

force
 

feedback
 

control.
 

Finally,
 

the
 

effec-
tiveness

 

of
 

the
 

proposed
 

control
 

strategy
 

was
 

ultimately
 

verified
 

by
 

simulation.

Key
 

words gear
 

systems, chaotic
 

control, multistable
 

dynamics, extreme
 

learning
 

machine, elite
 

selection
 

strategy
 

slime
 

mould
 

algorithm

引言
  

齿轮传动系统具备传动精准、效率高且工作可

靠等诸多优势,广泛应用于机械、航空、轨道交通等

领域[1,2].在齿轮传动过程中,齿根区域因受到周期

性的接触力作用而产生交替应力,这可能导致疲劳

裂纹的形成.随着裂纹的逐渐扩展,可能会导致齿

轮断裂等严重故障[3,4].研究者们针对齿轮裂纹故

障做了大量研究,建立了精确的含裂纹故障的齿轮

模型,并分析了系统的振动特性[5-8].作为重要传力

部件,齿轮系统在服役过程中的动力学性能,对于

确保机械设备平稳运行至关重要,若出现混沌振

动,将导致齿轮传动稳定性变差[9,10],出现潜在故

障的风险增大,故研究者对齿轮系统动力学分析引

起了关注.Huang等[11]建立了具有分形间隙的齿

轮系统动力学模型,比较了具有固定间隙和分形间

隙系统的分岔和混沌现象.王靖岳[12]等建立了行

星齿轮系统动力学模型,并求解分析了激励频率对

系统的影响.王宗禄等[13]通过构造参数平面内不

同运动区域的边界线算法,得到系统在参数平面内

的分岔曲线,并对系统的全局动力学特性进行

研究.
  

混沌运动作为非线性系统的一种特有现象,它
的出现可能引起不规则振动,使齿轮无法正常工

作,甚至造成安全事故[14].因此,针对齿轮系统的

混沌控制具有重要意义.目前,对混沌所采用的主

要控制方法有 Ott-Grebogi-Yorke(OGY)法、自适

应控 制 法、参 数 摄 动 法 等[15-17].张 文 等[18]采 用

OGY法实现了单自由度齿轮的混沌控制.Arian
等[19]针对带惰轮的齿轮传动系统,采用滑模和自

适应滑模控制策略,实现了系统的混沌控制.Sheng

等[20]以采煤机为例,使用基于比例积分(PI)的方

法实现了混沌的控制.
  

齿轮系统丰富复杂的运动性态往往是多参数

耦合作用的综合结果,不同参数之间具有非线性的

耦合关系,目前针对含裂纹情况下的齿轮系统的双

参协同控制,还未见文献公开报道,且关于参数与

初态的优化匹配问题也较为鲜见.为丰富齿轮系统

混沌的控制理论,减轻齿轮运行的不良振动,本文

对齿轮系统的混沌动力学进行了分析,并提出了一

种混沌控制器.建立了含裂纹齿轮系统的动力学模

型,找到了混沌发生的区域,基于ELM 设计混沌

控制器,同时提出了ESMA算法对控制器参数进

行优化,实现混沌运动向预期周期运动的传递,最
后通过力反馈控制,将系统转迁至振幅更小的周期

轨道,并通过数值仿真验证了控制方法的有效性.

1 含裂纹齿轮系统动力学建模

1.1 含裂纹齿轮副建模及刚度影响机理分析
  

为建立更符合实际的裂纹模型[8],本文建立同

时沿齿宽与轮齿中心方向扩展的齿根裂纹扩展方

向及形状示意图,如图1所示,αc、qc、bc 分别表示

裂纹扩展角、裂纹深度以及裂纹宽度,L 为齿宽.

图1 齿轮副裂纹模型

Fig.1 Crack
 

model
 

of
 

gear
 

pair
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本文在团队研究基础上,采用文献[21]所提出

的方法,计算含裂纹齿轮副时变啮合刚度.为了研

究不同裂纹参数对时变啮合刚度的影响,采用如表

1所示的齿轮传动系统基本参数.随裂纹参数变化

下的时变啮合刚度瀑布图如图2所示.图2展现了

在bc=0.6的条件下,不同裂纹深度(qc=0.8、

1.6、2.4、3.2)和裂纹扩展角(αc=30、45、60、70)下

的时变啮合刚度曲线,结果表明,裂纹深度和扩展

角的增加导致系统裂纹的严重程度加剧,相应地,

时变啮合刚度呈现下降趋势.图3展示了系统在参

数qc 和αc 变化时,周期性平均啮合刚度的云图,

由图可知,随着裂纹长度和扩展角的增大,系统的

刚度呈现出逐渐减小的趋势.

表1 齿轮几何参数

Table
 

1 Gear
 

geometry
 

parameters

Pinion
 

(gear
 

wheel) Modulus
m/mm

Number
 

of
 

teeth
z

Tooth
 

width
L/mm

Pressure
 

angle
α/(°)

Headspace
 

coefficient
c*

Top
 

of
 

tooth
 

height
 

factor
ha*

Main
 

gear
 

1 3 40 25 20 1 0.25

Slave
 

gear
 

2 3 40 25 20 1 0.25

图2 随裂纹参数变化的刚度瀑布图

Fig.2 Stiffness
 

waterfall
 

chart
 

with
 

variation
 

of
 

crack
 

parameters

图3 qc-αc变化下的刚度幅值云图

Fig.3 Stiffness
 

amplitude
 

cloud
 

for
 

variation
 

of
 

qc-αc

1.2 含裂纹齿轮传动系统动力学模型及状态方程
  

为了探究含裂纹情况下齿轮系统混沌运动机

理,以文献[13]中建立的三自由度直齿圆柱齿轮传

动系统为研究对象,在此基础上引入上述裂纹模

型,建立如图4所示的含裂纹齿轮系统动力学模

型,图中,齿轮1、2分别为主、从动齿轮;Ti(i=1,

2)表示作用在主、从动齿轮上的转矩;yi、θi、mi、

Ii、Ri、cbi、kbi、fbi、Fbi(i=1,2)分别表示主从动轮

在竖直方向上的位移、扭转角位移、质量、惯性矩、

图4 含裂纹三自由度齿轮系统动力学模型

Fig.4 Dynamic
 

model
 

of
 

crack-containing
 

gear
 

system

基圆半径以及主从动轴上轴承支撑的阻尼、平均刚

度、轴承间隙函数和对齿轮的支撑力;cg、bg、e(t)、

kg(t)、L 分别表示啮合阻尼、轮齿间隙、静态传递

误差、时变啮合刚度以及齿宽,系统量纲一化状态

方程如式(1)所示:

x·1=x2

x·2=ηF'
b1-2ηξ11x2-2ξ13x6-

 k11fb1(x1)-k13(τ)fg(x5)

x·3=x4

x·4=ηF'
b2-2ηξ22x4+2ξ23x6-

 k22fb2(x3)+k23(τ)fg(x5)

x·5=x6

x·6=ηF'
m +ηF'

aω2cos(ωτ)+x·2-x·4-

 2ηξx6-k33(τ)fg(x5)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(1)
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式(1)中,x1、x3、x5 和x2、x4、x6 分别表示主、从
动齿轮与齿轮传动相对扭转的无量纲位移和速度,

x1=y1/b、x3=y2/b、x5=yg/b,其中b 为标称尺

寸,yg=θ1R1-θ2R2+y1-y2-e(t)为齿轮啮合

线上的动态传递误差;η为裂纹程度表征系数,且

η=k'
gav/kgav(kgav、k'

gav 分别为进入啮合时和无裂纹

时的平均啮合刚度);τ=ωnt为无量纲时间,ωn=

kgav/mg为系统固有频率,mg 表示齿轮副的等效

质量;ω 为无量纲啮合频率,且ω=ω'/ωn,ω'为啮

合频率.F'
b1、F'

b2、F'
m、F'

a 分别为主、从动齿轮无量

纲轴承支撑力,切向平均作用力及齿轮综合误差幅

值.式中其他无量纲参数为:b
-
g=bg/b、b

-
i=bi/b

(i=1,2);ξ11=cb1/(2m1ωn)、ξ22=cb2/(2m2ωn)、ξ=
cg/(2mgωn)、ξ13=cg/(2m1ωn)、ξ23=cg/(2m2ωn);

k
-
g(t)=kg(t)/b、k11=ω21/ω2n、k22=ω22/ω2n、k33=

kg(t)/kgav=1-kcos(ωτ),其中k 为无量纲啮合刚

度,k13=k23=k33/4;fg(x5)、fbi(xi)为间隙非线性

函数:

fg(x5)=

x5-b
-
g, x5 >b

-
g

0, x5 ≤b
-
g

x5+b
-
g, x5 <-b

-
g

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁

(2)

fbi(xi)=

xi-Bi, xi >Bi

0, xi ≤Bi

xi+Bi, xi <-Bi

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (i=1,3)

(3)
其中Bi 为无量纲轴承游隙.

2 含裂纹齿轮系统动力学特性分析
  

为探究图4所示系统混沌运动形成机理,取

Poincaré截面为:∑ ={(x1,x
·
1,x3,x

·
3,x5,x

·
5,

θ)∈R6×S,θ=nT},激励周期T=2π/ω.选取参

数F
·

b=0.1,F
·

a=0.05,b
-
g=1.0,Bi =0.6,c11 =

0.01,c22=0.01,c13=0.025,c23=0.025,k11=1.3,

k22=1.3,k=0.1,F
·

b1=0.1,F
·

b2=0.2,初始条件

xi=0(i=1,2,3,4,5,6),探究系统关键参数对动

力学特性的影响.

2.1 裂纹程度表征系数η的影响
  

为深刻揭示齿轮系统的动力学演化规律,选取

上述基本参数,探究ω=2.615,ξ=0.1时,随η 变

化时系统混沌运动的形成机理,图5和图6为齿轮

系统随η 变化的分岔图以及最大Lyapunov指数

图 (top
 

Lyapunov
 

exponents,TLE).定 义 PD、

IPD、HF以及SN分别表示周期倍化分岔、逆周期

倍化分岔、Hopf分岔和鞍结分岔.由图可知随着η
的增加,系统在η=1.082处由周期2经PD进入

周期4运动,此时TLE<0,在分岔点处近似等于

0,然后在η=1.968处系统经 HF进入概周期运

动,在概周期期间,TLE持续等于0,之后系统经过

一段短暂的周期窗口后,最终进入混沌运动.综合

分析可知,随着η 增大,系统的动力学行为趋于复

杂,最终进入混沌运动.这是因为随着裂纹程度的

加剧,齿轮运转不平稳、产生异常振动或噪声,降低

了齿轮的正常工作性能.

图5 随η变化的分岔图

Fig.5 Bifurcation
 

diagram
 

with
 

η

图6 随η变化的TLE图

Fig.6 TLE
 

varying
 

with
 

η

2.2 参数平面ω-ξ内的动力学特性
  

现有的研究中,通常只考虑单一参数变化对系

统动力学特性的影响,然而,动力学参数之间实际

上存在着复杂的耦合作用,本节选取ω 与ξ为研究

17
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对象,考虑在轻微裂纹情况下(αc、qc、bc 分别为

0.8、0.6以及30°,η=1.0498),啮合频率ω 与阻尼

ξ同时变化时,系统在ω-ξ参数平面上的动力学特

性.系统在ω-ξ 参数平面内的运动分布图及 TLE
图如图7、图8所示,图中不同周期用不同颜色表

示,绿色区域代表周期1运动(P1),蓝色代表周期

2(P2),黄色代表周期4(P4),深蓝色代表周期8
(P8),紫 色 表 示 周 期16(P16),红 色 代 表 混 沌

(Chaos),粉色表示概周期(H),TLE图中绿色、蓝
色、与黄色分别对应于TLE小于0、等于0以及大

于0的情况.

图7 ω-ξ平面运动分布图

Fig.7 ω-ξ
 

Plane
 

motion
 

distributions

图8 ω-ξ平面TLE图

Fig.8 ω-ξ
 

plane
 

TLE
 

plot
  

从双参分岔图可以看出系统运动分布情况,由
图可见,参数平面的右上角为P1,随着参数ω 以及

ξ的减小,系统先经PD1由P1进入P2,随参数的

变化,在P2边界,系统经PD2进入P4,在部分参

数区间,系统经SN1进入Chaos,随着参数的减小,
在ω=3附近,系统先经HF1进入 H,随后经 HF2
进入 P8,再经 PD3进入 P16,最后经SN2进入

Chaos.为定量分析系统运动的过渡规律,选取与分

析Poincare截面相同的参数来计算TLE.对于较

大的ξ值,系统无论ξ取何值,始终维持周期运动

状态,此时TLE值小于0,表明系统表现出稳定的

周期性运动,ξ 的变化对系统的运动状态影响较

小.相反,当ξ较小时,随着频率ω 的降低,系统在

大部分区域会从低周期运动转变为高周期或混沌、

概周期运动,此时TLE值非负,系统开始表现出无

序的混沌运动特征.总体来说,在该参数平面内,系
统运动状态会随ξ与ω 的减小逐渐失稳,因此在工

程中应避免此类参数.
  

图9和图10为系统在ω-ξ参数平面内的最大

扭转位移以及TLE幅值云图,其能综合反映ω 与

ξ对系统振动幅值的耦合影响,由图可知,随着ω
与ξ的减小,系统的振幅逐渐增大,对应的TLE幅

值也变大,系统的混沌程度更高,从图中也可以看

出系统幅值在参数区域的分布规律,在实际参数选

取中应尽量避免幅值较大的参数.

图9 ω-ξ平面上最大扭转位移幅值云图

Fig.9 Cloud
 

map
 

of
 

maximum
 

torsional
 

displacement
 

amplitude
 

on
 

the
 

ω-ξ
 

plane

图10 ω-ξ平面上TLE幅值云图

Fig.10 Cloud
 

view
 

of
 

TLE
 

amplitude
 

in
 

the
 

ω-ξ
 

plane

2.3 系统随ω 变化的多稳态动力学

多初值分岔图研究有助于理解系统行为对初

始条件的敏感性,这对于设计更为可靠的齿轮传动

系统至关重要.为揭示系统的全局分岔特性,选取

ξ=0.1,η=1.0489,分别以ω 增大和减小两种方式
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计算得到系统随ω 变化时的分岔情况,其多初值

分岔图和TLE图如图11、图12所示,图中用不同

的颜色表示共存的不同吸引子或分岔分支.由图可

知,随着ω 增加(图中橙色图像),当ω∈[2.5,

2.779]之 间 时,系 统 为 混 沌 运 动,当 ω 增 加 至

2.779时,系统经SN进入周期4运动,随着ω 增

加,在ω=2.867时,系统经 HF进入概周期运动,

此时TLE=0,当ω增加至2.951时,系统经HF进

入周期16运动,随后在ω=3.105、3.114、3.092时

分别经IPD进入周期8、周期4以及周期2运动,最
后在ω=3.295处经IPD退化为周期1运动,此后

TLE<0.随着ω 减小时(图中蓝色图像),当ω>
3.012时系统为稳定的周期1运动,随着ω 减小至

3.012,系统经PD进入周期2运动,随后在ω=
2.915处经PD进入周期4运动,最后在ω=2.779
时经SN走向混沌.通过对比可以看出,由于初值

的不同,在部分参数区间内系统的分岔特性并不相

同,出现了吸引子共存的现象.

图11 随ω 变化的多初值分岔图

Fig.11 Multi-initial
 

bifurcation
 

plot
 

with
 

ω

图12 随ω 变化的多初值TLE
Fig.12 Multi-initial

 

TLE
 

varying
 

with
 

ω

3 三自由度齿轮系统混沌控制

3.1 控制分析
  

通过第2节对影响齿轮系统非线性动力学的

主要因素的分析,可以发现合理选择非线性参数区

间可以有效降低系统多周期和混沌的发生概率.图

13(a)~(d)为参数ω=2.615、ξ=0.1时(图7中☆
所示)系统的动力学响应,由图可知,Poincaré映射

图显示出许多离散点集,相图为无限次折叠的曲

线,不重复且杂乱无章,时间历程图也显示出非周

期运动,幅频谱是连续的.这些特征表明,在此参数

下,齿轮系统处于混沌状态.

图13 ω=2.615、ξ=0.1时系统动态响应

Fig.13 Dynamic
 

response
 

of
 

the
 

system
 

for
 

ω
 

=
 

2.615
 

and
 

ξ
 

=
 

0.1

目前,混沌控制主要的方法是基于系统状态变

量的反馈以及单参数反馈来实现,通过分析我们可

以看到,齿轮系统受多个参数耦合作用的共同影

响,在某些特定参数下,仅靠单一参数控制无法控

制到目标周期运动,如果采用双参协同控制,可以

提升系统从混沌控制到周期运动的效率,并且可以

将混沌控制至幅值更小的参数区域.同时通过上述

仿真发现,在某些参数条件下,图4所示系统因对

初始状态的敏感性不同,稳定运行于若干个不同的

吸引子上.针对图4所示系统对初始状态的敏感

性,以系统共存的某一个吸引子对应的轨道作为目

标轨道,而另一个吸引子对应的轨道作为被控轨

道,通过施加力反馈控制,即可实现系统向幅值更

小的周期吸引子的转迁,实现控制的最优化.
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3.2 控制策略
  

为实现系统经混沌控制向周期运动且幅值相

对较小的目标,解决混沌控制时初态与参数的优化

匹配问题,本文设置分步控制以实现控制的最优

性,即先采用双参控制,将混沌控制为周期运动,再
利用吸引子共存特性将系统转迁至幅值更小的周

期轨道.基于此我们设计了如图14所示基于ELM
的双参数反馈控制器,用以对混沌行为进行控制.
双参数反馈ELM 控制器输入层为2个,分别选取

Poincaré截面上相邻两次投影点之间的距离d(k)
和d(k-1)作为控制器的输入,即

 

d(k)=‖X(k)-X(k-1)‖
d(k-1)=‖X(k-1)-X(k-2)‖ (4)

 

隐层节点数需满足控制系统性能要求,本文在

前期调研和团队研究成果的基础上,经过反复对比

试验,选定其为5个.最后确定高斯径向基函数作

为ELM的特征映射,即

ϕs(D-Cs)=exp-
‖D-Cs‖2

2σ2
Ns  (5)

  

控制器的输出则定义为齿轮系统啮合频率ω
与阻尼ξ的微幅调整量,即

uω(k)=∑
5

s=1
βsϕs(D,Cs)+bj1=∑

5

s=1
βs ×

 exp-
‖D-Cs‖2

2σ2
Ns  +bj1=Δω

uξ(k)=∑
5

s=1
βsϕs(D,Cs)=∑

5

s=1
βs ×

 exp-
‖D-Cs‖2

2σ2
Ns  +bj2=Δξ (6)

至此,确定ELM 双参控制器结构如图14所

示,其输入层为2个节点、输出层为2个节点.其中

β为隐层和输出层之间的权重矩阵,网络具有5个

隐节点,ϕs(D-Cs)为高斯径向基函数,bji 为偏置,

u(k)为控制器输出的扰动量.为保持控制有效性,

设定umax 为最大扰动量,则-umax<u<umax.

图14 双参协同控制器结构

Fig.14 Structure
 

of
 

the
 

dual-parameter
 

co-controller

为实现系统向幅值更小的周期运动的转迁,在
双参控制后,针对图4所示系统对初始状态的敏感

性,以系统共存的幅值较低的吸引子对应的轨道作

为目标轨道,而高幅值吸引子对应的轨道作为被控

轨道,通过施加力反馈控制,从而实现吸引子之间

的转迁.即控制器输入层与隐层不变,输出则为k
时刻施加于被控系统的外部载荷(即外加驱动力)

u(k)=Fk,即:u(k)=∑
5

s=1
βsϕs(D,Cs)+bj1 =

∑
5

s=1
βs ×exp-

‖D-Cs‖2

2σ2
Ns  +bj1=Fk .

3.3 参数优选
  

在混沌控制系统的设计过程中,必须选定一些

关键参数,这些参数的选择将直接影响控制器的效

果以及整体设计的效率.为了解决传统黏菌算法容

易陷入局部最优解和收敛精度不足的问题,本研究

提出了一种新的算法———基于精英选择策略的黏

菌算法.该算法融合了精英主义遗传算法的优点,

具体收敛速度快,求解稳定等特点.
3.3.1 控制性能指标函数构建

  

控制性能指标函数是遗传算法中评估个体优

劣并指导其进化方向的关键机制,同时也用于评估

ELM控制器对目标系统的控制效果.根据混沌运

动控制目标(将混沌运动控制为规则的周期运动,

且齿轮副相对扭转振副较小),本文所提出的含轻

微裂纹齿轮系统混沌运动的智能优化控制策略为:

将能够反映系统运动性态演化趋势的Poincaré截

面图的特征进行量化表征,以构建控制性能指标函

数;依据非线性系统反馈控制原理,基于ELM 设

计控制器,并采用ESMA算法对控制器参数迭代寻

优,既求解出最优或相对最优控制器参数解,也实现

控制品质的量化评价.综合上述因素,本文构建

ESMA搜索最优参数的控制性能指标函数如下:

 Fitness=α1∑
k

jj=1
d* -‖X(k)-X(k-1)‖ ×

ln 1γ  +α2∑
k

jj=1
u(k)+α3

x5x6

x2
5+x2

6+1
(7)

其中,αi(i=1,2,3)为相对权重;‖X(k)-X(k-1)‖
为Poincaré截面上相邻两次迭代投影点间的距离,

其反映了Poincaré截面图的点集分布变化趋势;

d*为Poincaré截面上相邻两点距离的期望值;γ
为区间[0,1]上的随机数;u(k)为控制器输出,此
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项表征控制时控制能量损耗情况; x5x6

x2
5+x2

6+1
为齿

轮副相对扭转振动程度表征系数.
3.3.2 基于ESMA的控制器参数优化

  

在黏菌算法中,黏菌is 会根据当前位置的客

观条件,决定每个个体所在位置的权重,然后个体

会根据权重更新位置.黏菌算法中种群初始化采用

的是随机生成种群个体,方式如式(8)所示,其中,

vc=[-a,a],vb=[-b,b],rs 为[0,1]的随机数,

ub和lb分别为搜索空间上下界.为加快前期寻优

速度,本文采用一维Logistic混沌映射[数学表达

公式为:Yn+1=μYn*(1-Yn),μ 是Logistic参数]

代替rs 初始化种群,来改善初始化中产生相同个

体降低种群多样性的问题,经试验知μ 取4时,Y
的取值均匀地分布在[0,1]上.采用改进后的位置

更新公式(8)更新黏菌位置,在首次位置更新之后,

计算原始位置适应度,然后通过强化搜索公式(9)

获取新的位置,之后再计算强化搜索更新后的适应

度.在强化搜索之后对适应度进行排名再更新位

置,其更新公式如式(10)所示,即如果新的个体位

置的适应值小于原来个体位置的适应值,或者搜索

黏菌适应度排名位于所有个体排名的后1/3的精

英子群,则如公式(9)将新产生的个体位置代替原

来搜索黏菌个体位置.

X(t+1)=
rs×(ub-lb)+lb, rs<p
vc×X(t), p≤rs 

(8)

XStrengthen
t+1 =Xb(t)+vb[W ×XA(t)-XB(t)]

(9)

Xnew
t+1=

XStrengthen
t+1 ,

  

fit(XStrengthen
t )<fit(Xt)

 

or
 

FL(i)>
2
3partiNum

X(t),
 

otherwise

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(10)

其中,Xb 为迭代的最佳位置,XA 和 XB 为迭代时

随机选择的两个黏菌个体,控制参数p、a、b 和权

重系数Ws 的更新公式分别为

p=tanh(|S(is)-DF|),is=1,2,…,Ns

(11)

Ws=
1+rs×log

bF-S(is)
bF-wF +1  , 

if
 该个体适应度

在群体前面

1-rs×log
bF-S(is)
bF-wF +1  , 

else
 

在后一半

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

 

(12)

a=arctanh(b) (13)

b=1-
ts
Ts

(14)

式中bF 和wF 分别表示当前迭代中最优和最差适

应度值,DF 为所有迭代中的最优适应度,S(is)为
当前适应度.ESMA算法优选控制器参数流程如

图15所示.

图15 ESMA算法优化控制器流程图

Fig.15 Flowchart
 

of
 

ESMA
 

optimization
 

controller

4 混沌控制与仿真

4.1 ESMA-ELM 控制结果分析
  

由3.1节分析可知,系统在ω=2.615,ξ=0.1
时处于混沌运动,为了验证基于ESMA-ELM 的双

参协同智能优化控制策略的有效性,在 MATLAB
中进行仿真,对图13(a)所示混沌吸引子进行控

制.设置ESMA算法的参数 Ns 和Ts 分别为30
和25,为了清楚地展示混沌运动控制效果,本文选

择在系统迭代k=500次时施加控制.
  

图16和图17分别是控制目标为周期1运动

和周期2运动的仿真结果图.其中图16(a)、图17
(a)和图16(b)、图17(b)分别是x5-k和x·5-k控

制轨道图,图16(c)和图17(c)展现了系统在控制

过程中Poincaré截面上投影点的收敛过程.表2和
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表3分别是预期控制目标为周期1运动和周期2 运动时经ESAM算法优化后的ELM参数.
表2 控制器参数(周期1)

Table
 

2 Controller
 

parameters
 

(period
 

1)

Hidden
 

layer
 

node
 

center Centre
 

width Weights
 

linking
 

the
 

hidden
 

and
 

output
 

layers Bias
 

bj1 Bias
 

bj2

(0.3383,
 

-0.4217) 0.0370 (1.7305,
 

-0.2715) -0.7801 0.8858

(-0.2202,
 

0.5319) 0.1703 (1.7877,
 

-0.4217) -0.7801 0.8858

(-0.6651,
 

-0.6588) 0.3631 (-0.3648,
 

-1.3415) -0.7801 0.8858

(0.5021,
 

-0.1974) 0.1321 (1.3465,
 

-1.8610) -0.7801 0.8858

(-0.9439,
 

0.2047) 0.6118 (0.7528,
 

1.6256) -0.7801 0.8858

表3 控制器参数(周期2)
Table

 

3 Controller
 

parameters
 

(period
 

2)

Hidden
 

layer
 

node
 

center Centre
 

width Weights
 

linking
 

the
 

hidden
 

and
 

output
 

layers Bias
 

bj1 Bias
 

bj2

(0.0872,
 

-0.2388) 0.1119 (0.2239,
 

-0.2227) -0.0442 0.0539

(0.1239,
 

0.2232) 0.7891 (0.1301,
 

0.7288) -0.0442 0.0539

(-0.2780,
 

-0.0049) 0.1246 (-0.1900,
 

-0.2130) -0.0442 0.0539

(-0.1194,
 

0.0037) 0.9249 (-0.1428,
 

-0.0098) -0.0442 0.0539

(-0.0910,
 

0.0919) 0.1652 (-0.0117,
 

-0.3280) -0.0442 0.0539

  从图16可知,在k=548时,系统由混沌状态

转变为稳定的周期1运动,在Poincaré截面上也可

以看出系统由密集分布的无数个点收敛为一个点

(图中为1个绿色★).图17展现了系统控制为周

期2的结果,系统经54步被控制为周期2运动,

Poincaré截面上收敛为2个点(图中为2个绿色

★).由上述仿真结果可知,本文所提出的方法对混

沌运动实现了有效的控制.仿真研究中,控制目标

可以设定为其他周期轨道,但由于篇幅限制,本文

不再详细讨论.

图16 系统的受控周期1轨道

Fig.16 Controlled
 

period
 

1
 

orbit
 

of
 

the
 

system

图17 系统的受控周期2轨道

Fig.17 Controlled
 

period
 

2
 

orbit
 

of
 

the
 

system

4.2 控制效果对比分析
  

图18~21为系统采用不同控制方法,将齿轮

系统的混沌状态镇定到周期运动的仿真结果图,图
中蓝色表示混沌运动,紫色、橙色以及绿色分别表

示采用 SMA 单 参 控 制、ESMA 单 参 控 制 以 及

ESMA双参控制的控制结果.图18和图19为系统

x5-k 和x·5-k 全局控制轨道图,图20为系统控

制过程中Poincaré截面上投影点的收敛过程,系统
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在不同控制方法下分别收敛于三个对应颜色的★,

为更清晰展现控制效果,画出系统在x5-k 轨道

上的局部放大图,如图21所示.通过控制结果可以

看出,采用本文设计的控制器,均能在较快的响应

下实现轻微裂纹齿轮系统的混沌控制.表4为控制

后系统的控制结果对比,通过分析可以看出,采用

本文改进的ESMA算法可以加快算法的寻优迭

代,使系统更快稳定至周期轨道,且扭转位移幅值

更小,而采用改进算法后利用双参协同控制,则能

进一步实现系统周期轨道的稳定化的快速响应,并
且将系统稳定至幅值更小的周期轨道.本文设计的

方法能够有效完成对图4所示系统混沌运动的控

制要求,在工程实际中对齿轮的冲击力更小,对于

机械设备安全运行有着重要意义.

图18 x5 轨道图

Fig.18 x5 orbital
 

diagram

图19 x·5 轨道图

Fig.19 x·5 orbital
 

diagram

图20 Poincaré映射图
Fig.20 Poincaré

 

map
 

diagram

图21 局部放大图

Fig.21 Local
 

enlargement

表4 控制效果对比

Table
 

4 Comparison
 

of
 

control
 

effects

表征参数 SMA单参 ESMA单参 ESMA双参

x5 0.8414 0.7265 0.7041

x·5 0.2845 0.2613 -0.1568

k 619 573 542

4.3 系统共存吸引子转迁控制
  

通过3.1节分析,针对图4所示系统吸引子共

存的现象,通过施加力反馈控制,从而实现吸引子

之间的转迁.本文以经上文双参协同控制后的周期

1轨道作为被控轨道,以图11中幅值较小的周期1
轨道作为目标轨道,通过力反馈控制,实现系统共

存吸引子之间的转迁,为凸显控制效果,本文在双

参协同控制的基础上,在k=700次时施加力反馈

控制.
  

图22(a)~(d)为系统转迁控制图,由图可知,

图22 共存吸引子转迁控制

Fig.22 Control
 

of
 

coexisting
 

attractor
 

transitions
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系统通过双参协同控制控制,在k=542时系统被

控制为周期1轨道,在控制至k=700时施加力反

馈控制,控制后的系统位移幅值由0.7041下降至

0.6584,在Poincaré截面上表示为从绿色★转迁至

蓝色★,成功实现了系统向更小幅值周期1轨道的

转迁,完成了控制过程中初态与参数的优化匹配.
由上述仿真结果可见,利用本文方法能够很好地实

现对系统共存吸引子之间的转迁.

5 结论
  

本文以三自由度齿轮系统为研究对象,建立了

含裂纹齿轮系统动力学模型,通过双参运动分布

图、最大Lyapunov指数图以及扭振位移振幅云图

等,分析了系统的动力学行为,针对含轻微裂纹情

况的三自由度齿轮传动系统中的混沌运动,提出了

基于ESAM-ELM的混沌运动控制策略.通过所设

计的控制器实现了系统从混沌向周期轨道的控制,

并针对系统中的吸引子共存的现象,利用力反馈控

制,将系统控制至振幅更小的周期轨道,仿真实验

结果表明了该控制方法能够有效地控制齿轮系统

的混沌状态,并且响应速度快,控制的幅值小,该方

法的可行性和有效性得到了验证.
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