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Abstract The chaotic dynamics of a crack-containing gear transmission system were analyzed, and a
chaotic control strategy was proposed. Firstly, a model of a crack-containing three-degree-of-freedom
gear system was established to analyze the effect of crack evolution on meshing stiffness. Subsequently,
the change rule of the system dynamics response under the action of parameter w-£& coupling was ana-
lyzed. The distribution map of motion on the parameter plane of the system, the displacement amplitude
cloud map, and so on were drawn. The correlation between chaotic motions and specific parameter con-
ditions of the system and the characteristics of their manifestation were analyzed. Secondly, the law of

the coexistence of attractors was investigated through the multi-primary-value bifurcation map. Aiming
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at the region where chaos occurred in some parameter intervals, a chaotic controller was designed based
on extreme learning machine (ELM). A control performance index function was constructed to control
the chaotic motion into the expected periodic motion by using the output of the chaotic controller to out-
put tiny perturbations applied to the controllable parameters w and & of the system. Meanwhile, the elite
selection strategy slime mould algorithm (ESMA) was combined with ELM to optimize the parameters
of the chaotic controller. Additionally, based on the attractor coexistence law, the system was stabilized
to a periodic orbit with a smaller displacement amplitude by force feedback control. Finally, the effec-
tiveness of the proposed control strategy was ultimately verified by simulation.

chaotic control, multistable dynamics, extreme learning machine, elite
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Table 1 Gear geometry parameters
. Modulus  Number of teeth Tooth width  Pressure angle Headspace coefficient Top of tooth height factor
Pinion (gear wheel) o % N
m/mm z L/mm a/(*) c ha
Main gear 1 3 40 25 20 1 0. 25
Slave gear 2 3 40 25 20 1 0. 25
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Fig. 2 Stiffness waterfall chart with variation of crack parameters
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Start

Initialising slime mould locations using

Logistic Chaos Mapping X(i=1,2,***,n)and |_

the number of slime mold N,. Maximum )
iterations T,

12
Calculate the hunger value
for each slime mold

v
Update the weights
W.with the parameters p

v
Adjust the position using equation (8) and
determine the hunger level.

Hunger Ranking

Update the position of the slime
mold according to equation (10)

Whether the T has been reached
Y

The output population optimal position Gbest
(i.e. optimal solution for controller parameters)

End
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Fig. 15 Flowchart of ESMA optimization controller
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Table 2 Controller parameters (period 1)

Hidden layer node center Centre width Weights linking the hidden and output layers Bias b, Bias b,
(0.3383, —0.4217) 0.0370 (1.7305, —0.2715) —0.7801 0. 8858
(—0.2202, 0.5319) 0.1703 (1.7877, —0.4217) —0.7801 0. 8858

(—0.6651, —0.6588) 0.3631 (—0.3648, —1.3415) —0.7801 0. 8858
(0.5021, —0.1974) 0.1321 (1.3465, —1.8610) —0.7801 0. 8858
(—0.9439, 0.2047) 0.6118 (0.7528, 1.6256) —0.7801 0. 8858

*3 EHBSB(EH?2)
Table 3 Controller parameters (period 2)

Hidden layer node center Centre width Weights linking the hidden and output layers Bias b, Bias b,

(0.0872, —0.2388) 0.1119 (0.2239, —0.2227) —0.0442 0.0539

(0.1239., 0.2232) 0.7891 (0.1301., 0.7288) —0. 0442 0.0539
(—0.2780, —0.0049) 0.1246 (—0.1900, —0.2130) —0.0442 0. 0539
(—0.1194, 0.0037) 0.9249 (—0.1428, —0.0098) —0.0442 0.0539
(—0.0910, 0.0919) 0.1652 (—0.0117, —0.3280) —0.0442 0. 0539
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Table 4 Comparison of control effects

FAESH SMA ¥.& ESMA ¥.% ESMA W%
T 0. 8414 0. 7265 0. 7041
T 0. 2845 0.2613 —0.1568
k 619 573 542
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