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Characteristic Analysis of Rotor Aeroelastic with Three-Dimensional Blade Tip

Yu Zhihao Cheng Yi Li Chunhua’
(National Key Laboratory of Helicopter Aeromechanics, CHRDI, Jingdezhen 333001, China)

Abstract A rotor dynamic analysis method for rotor aeroelasticity with three-dimensional blade tip was
developed, and applied to analyze its aeroelastic characteristics. Based on the medium-size deformation
beam theory and the free wake model, the joint transfer matrix employed in the blade kinematic and the
deformation compatibility principle was utilized. The influence of the sweep angle and anhedral angle of
the blade tip on the rotor aeroelastic characteristics was analyzed in detail. The results showed that the
forward/aft swept configurations at the blade tips can result in the coupling effect in the flap and torsion
directions, while the dihedral/anhedral configurations at the blade tips can lead to the coupling effect in
the lag and torsion directions. Especially under high-speed conditions, the elastic torsion of the blades is

significantly affected by the changes in the three-dimensional blade tip configurations.

Key words helicopter, rotor, aeroelastic response, anhedral, sweep
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