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Parametric Resonance and Bifurcation Analysis of a Model of Bass Drum Beater "
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Abstract In engineering systems, many parametrically excited vibrations can be modeled by the Mathieu
equation with nonlinear terms. This study establishes a physical model using a bass drum trigger, where
the striking process of the drum beater is equivalently represented as a Kapitza-like pendulum system.
Through Taylor expansion, we derive a Mathieu-Duffing equation incorporating a quintic nonlinear
term. A perturbation method is systematically employed to analyze the transition curves and stability
variations near the first parametric resonance tongue, revealing the coexistence of multiple equilibrium
points in the system. By investigating the eigenvalues of the Jacobian matrix, we explicitly demonstrate
the emergence mechanisms of both supercritical and subcritical pitchfork bifurcations at equilibrium
points, with particular emphasis on their intrinsic relationships with nonlinear parameters. Numerical
simulations are conducted to reconstruct the bifurcation diagram within the three-dimensional parameter
state space for the first resonance tongue, thereby validating the theoretical predictions. The results
comprehensively illustrate the intricate interplay between parametric excitation, nonlinear stiffness, and

bifurcation dynamics in such hybrid oscillator systems.
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