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摘要 工程学中的许多参数激励振动都会产生带有非线性项的 Mathieu方程.本文以底鼓触发器为实物模

型,将底鼓槌子的击打过程等效为一个类 Kapitza单摆系统,运用泰勒展开得到含有五次方非线性项的

Mathieu-Duffing方程.并采用摄动法全面分析了首个参数共振舌域的过渡曲线及附近的稳定性变化,确定

了系统具有多个平衡点共存.借助雅可比矩阵的特征值,详细揭示了平衡点处超临界叉式分岔与亚临界叉

式分岔的发生机制,深入探讨了分岔与非线性参数之间的内在关联.最后运用数值模拟得到了在三维参数

状态空间中的首个参数共振舌域的分岔图,并验证了理论推导的正确性.

关键词 Mathieu-Duffing方程, 摄动法, 过渡曲线, 超(亚)临界叉式分岔
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Abstract In
 

engineering
 

systems,
 

many
 

parametrically
 

excited
 

vibrations
 

can
 

be
 

modeled
 

by
 

the
 

Mathieu
 

equation
 

with
 

nonlinear
 

terms.
 

This
 

study
 

establishes
 

a
 

physical
 

model
 

using
 

a
 

bass
 

drum
 

trigger,
 

where
 

the
 

striking
 

process
 

of
 

the
 

drum
 

beater
 

is
 

equivalently
 

represented
 

as
 

a
 

Kapitza-like
 

pendulum
 

system.
 

Through
 

Taylor
 

expansion,
 

we
 

derive
 

a
 

Mathieu-Duffing
 

equation
 

incorporating
 

a
 

quintic
 

nonlinear
 

term.
 

A
 

perturbation
 

method
 

is
 

systematically
 

employed
 

to
 

analyze
 

the
 

transition
 

curves
 

and
 

stability
 

variations
 

near
 

the
 

first
 

parametric
 

resonance
 

tongue,
 

revealing
 

the
 

coexistence
 

of
 

multiple
 

equilibrium
 

points
 

in
 

the
 

system.
 

By
 

investigating
 

the
 

eigenvalues
 

of
 

the
 

Jacobian
 

matrix,
 

we
 

explicitly
 

demonstrate
 

the
 

emergence
 

mechanisms
 

of
 

both
 

supercritical
 

and
 

subcritical
 

pitchfork
 

bifurcations
 

at
 

equilibrium
 

points,
 

with
 

particular
 

emphasis
 

on
 

their
 

intrinsic
 

relationships
 

with
 

nonlinear
 

parameters.
 

Numerical
 

simulations
 

are
 

conducted
 

to
 

reconstruct
 

the
 

bifurcation
 

diagram
 

within
 

the
 

three-dimensional
 

parameter
 

state
 

space
 

for
 

the
 

first
 

resonance
 

tongue,
 

thereby
 

validating
 

the
 

theoretical
 

predictions.
 

The
 

results
 

comprehensively
 

illustrate
 

the
 

intricate
 

interplay
 

between
 

parametric
 

excitation,
 

nonlinear
 

stiffness,
 

and
 

bifurcation
 

dynamics
 

in
 

such
 

hybrid
 

oscillator
 

systems.
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引言
   

底鼓是一种低音打击乐器,广泛应用于管弦乐

队、军乐队和流行乐队中,主要用于产生深沉、震撼

的低频声音.其实物照片如图1(a)所示.整套底鼓

装置包括底鼓和击打装置,其中底鼓鼓壳通常由木

材、塑料或金属材料制成,尺寸较大,音色受到材质

和厚度的影响,鼓膜则由塑料等合成材料制成,其
张紧度与厚度决定了音色的稳定性和响度.击打装

置则通过底鼓触发器中的击槌对鼓膜进行持续打

击,其幅度直接影响音频的强度和音色特性.将底

鼓槌子的摆动过程等效为类 Kapitza单摆系统的

模型,其等效模型如图1(b)所示.在该模型中,槌
子被视为一个受外部周期性驱动力(例如鼓手脚踏

踏板施加的周期性推动力)影响的摆动系统.外力

的周期性施加使得槌子的振动行为与 Kapitza单

摆中的非线性动态响应相似[1].槌子的振幅和角度

不仅受到外力幅度的影响,还与槌子的固有频率及

外力频率之间的匹配关系密切相关.当外力频率接

近槌子的固有频率时,槌子的振幅将显著放大,表
现出典型的共振现象;而在其他频率范围内,槌子

的振幅则较小.这一过程揭示了类Kapitza单摆系

统中的共振特性及其非线性响应特征.

图1 底鼓的实物照片与其对应的等效物理模型

Fig.1 The
 

physical
 

photo
 

of
 

the
 

bass
 

drum
 

and
 

its
 

corresponding
 

equivalent
 

physical
 

model

在复杂动力学系统的研究中,具有周期性驱动

的非线性振动系统一直是一个重要的研究方向.作

为研究周期性驱动下非线性系统行为的经典模型,

Kapitza单摆系统已经被广泛应用于探索多种动态

现象.近年来,研究者们不仅仅关注 Kapitza单摆

系统的基本动力学特性,还扩展了其应用范围,并

对其稳定性与分岔行为进行了深入分析[2].Gloy
等[3]提出了通过引入驱动的环形螺旋形状作为

Kapitza单摆的推广模型,进而探讨了这种新型几

何配置下的动力学行为.此外,Citro等[4]研究了多

体Kapitza单摆的动态稳定性,并分析了在不同驱

动条件下系统的稳定区域,揭示了其在多体相互作

用下的复杂性.文献[5]进一步地分析了 Mathieu-
Duffing方程的稳定性与分岔行为,为周期性非线

性系统的稳定性研究提供了强有力的理论依据.这
些研究都为非线性系统的稳定性分析、分岔理论以

及多体动力学系统的研究提供了不同的分析方法.
  

Mathieu方程是一种含有周期时变系数的线

性微分方程.因其本身具有复杂的动力学特性,在
工程领域和动力学领域,如裂纹转子振动系统、齿
轮啮合模型、轮对轨道耦合动力学模型、阻尼激励

隔振机械装置结构、斜拉索-桥耦合参数振动模型

中,都有广泛的应用[6-10].随着众多学者对 Mathieu
方程的深入研究,促使其形式也得到了丰富拓展.
Qian等[11]研究了在参数激励和强迫激励作用下的

斜拉桥拉索的非线性动力学问题,利用多尺度方法

分析了1/2参激共振下的动力学响应.申永军

等[12-14]对分数阶拟周期 Mathieu方程进行了动力

学分 析.陈 予 恕 等[15-17]对 Van
 

der
 

Pol-Duffing-

Mathieu型系统的动力学响应进行了研究.丁千

等[18,19]对直齿圆柱齿轮啮合耦合振动系统和主动

控制压电旋转悬臂梁的参数振动进行了研究,对其

稳定性进行了分析.黄建亮等[20]对 Van
 

der
 

Pol-
Mathieu方程的动力学特性进行了研究,应用改进

的谐波平衡法精确计算出了方程的准周期响应.此
外,拟周期系数 Mathieu方程通常被应用于一些特

殊的动力系统[21-27],如含双频激励时变刚度的高速

列车受电弓非线性模型[21],高速列车受电弓-悬

链线 组 合 系 统[22],尤 其 是 海 上 的 一 些 浮 力 装

置[23-25],研究周期性波浪对设备及船舶的一些影

响,避 免 灾 难 的 发 生.Rand 等 则 针 对 拟 周 期

Mathieu方程不同共振状态的稳定区域进行了深

入研究[26,27].但这些研究通常以非线性低阶次方

项或线性化后的 Mathieu-Duffing方程为主要研究

对象[20-28].
  

本文以底鼓触发器为实物模型,将其等效为一

个类Kapitza单摆系统.为了更进一步得到更符合

实际运动过程的模型,利用泰勒展开得到一个含有

五次方非线性项的 Mathieu-Duffing方程.采用摄

动法分析了第一个参数共振舌域的过渡曲线及其
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附近的平衡点的稳定性变化规律,并进一步明确了

系统有多个共存平衡点.借助雅可比矩阵特征值,

详细分析了平衡点处超临界叉式分岔与亚临界叉

式分岔的发生机制,并深入探讨了这两类分岔与非

线性参数之间的内在关联性.最后数值模拟了系统

在A-ω1-B 参数空间中的首个参数共振舌域的分

岔图.

1 模型分析

在等效模型中,底鼓槌子的运动满足欧拉-拉格

朗日方程,它的相位x与它的位置关系满足如下方程

d
dt
∂ 
∂x·

=
∂ 
∂x
, (1)

其中  是拉格朗日函数,并且

 =
1
2mL2x·2+mL(g+Cω2

pcosωpt)cosx ,

(2)

将式(2)代入式(1)得到系统所对应的控制微

分方程

x··+(ω2
n +εcosωpt)sinx=0, (3)

其中ω2
n =g/L ,ε=-Aω2

p/L .
  

在相关式子里面,x 属于广义坐标,它能够决

定角位移的情况.而常数 M、g、L、A 以及ωp 各自

有着明确的物理意义,其中M 代表球的质量,g 表

示重力,L 为杆的长度,A 则是垂直振荡的幅度,

ωp 为垂直振荡的频率.
  

方程(3)在x=0与x=π这两个点处存在平

衡点.针对x 取较小值的情形,可以运用泰勒展开

把式(3)改写为如下形式,进而对各平衡点的局部

稳定性展开研究.

x··±(ω2
n +εcosωpt)x=0 (4)

其中,正号与负号各自对应着x=0以及x=π的

平衡点.就非参数激励系统而言,x=0时处于稳定

状态,而x=π时则是不稳定的.当存在参数激励

且参数频率有所不同时,这两个平衡点的稳定性均

会出现改变.在大多数的研究中[5],基本用泰勒展

开式的前两项x-x3/6来近似sinx,可以得到如下

系统

x··+(ω2
n +εcosωpt)x-

x3

6  =0.  

此时假设x 很小,约为ε的平方根量级,因此,

令x=εy,这样就能得到

y
··
+(ω2

n +εcosωpt)y-εy3

6  =0,
y
··
+(ω2

n +εcosωpt)y-ε
ω2

ny3

6 +O(ε2)=0.

如此可得含有三次非线性项的 Mathieu方程,

x··+(ω2
n +εcosωpt)x+εαx3=0.

  

对于x 小的时候,我们认为非线性项x3 并不

是特别小,为此用泰勒展开式的前三项x-x3/6+
x5/120+O(x7)来近似sinx,可以得到如下系统

x··+(ω2
n +εcosωpt)x-

x3

6+
x5

120+O(x7)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 =0.

令x=
 
εy,这样我们就能得到

y
··
+(ω2n +εcosωpt)y-εy3

6+ε2y
5

120+O(ε3y7)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 =0,

y
··
+(ω2n +εcosωpt)y-ε

ω2ny3

6 -ε2y
3

6cosωpt+ε2
ω2ny5

120+

O(ε3y7)=0,

y
··
+(ω2n +εcosωpt)y-ε

ω2ny3

6 -ε2y
3

6cosωpt+ε2
ω2ny5

120+

O(ε3y7)=0.
为了使结果在x ≈0与ε处近似更为精确,将

偏大的非线性项略去,偏小的非线性项也略去,即
直接取非线性项为五次方项,可得如下具有五次非

线性项的 Mathieu方程

x··+(ω2
n +εcosωpt)x+εαx5=0 (5)

2 稳定性分析
  

将x 和ωn 展开成下列的幂级数

x=x0+x1ε+x2ε2+x3ε3+x4ε4+x5ε5+… ,
(6)

ω2
n =ω2

0+ω1ε+ω2ε2+ω3ε3+ω4ε4+ω5ε5+…
(7)

  

将式(6)和式(7)代入式(5),并且合并同次项

得到

x··0+ω2
0x0=0, (8)

x··1+ω2
0x1=-ω1x0-x0cosωpt-αx5

0, (9)

x··2+ω2
0x2= -ω1x1-ω2x0-x1cosωpt-5αx4

0x1,
(10)

x··3+ω2
0x3=-ω1x2-ω2x1-x2cosωpt-

     5αx4
0x2-10αx3

0x2
1 (11)

  

由于式(5)中的五次非线性项,额外的五次和

四次项出现在式(9)和式(10)中,与线性情况一样,

所以式(8)的解为

13



动 力 学 与 控 制 学 报 2025年第23卷

x0(t)=Acosω0t+Bsinω0t (12)
  

将式(12)代入到式(9)中,得到

x··1+ω2
0x1= -ω1x0-x0cosωpt-αx5

0= -ω1(Acosω0t+Bsinω0t)-(Acosω0t+Bsinω0t)cosωpt-

 α(Acosω0t+Bsinω0t)5= -ω1Acosω0t-ω1Bsinω0t-
A
2cos

(ω0+ωp)t-
A
2cos

(ω0-ωp)t-

 B
2sin

(ω0+ωp)t+
B
2sin

(ω0-ωp)t-
5αA5

8 cosω0t-
5αA5

16cos3ω0t-
αA5

16cos5ω0t-
15αA4B
8 sinω0t-

 5αA
4B
4 sin3ω0t+

5αA4B
4 sinω0t-

5αA4B
16 sin5ω0t+

5αA4B
16 sin3ω0t-

15αA3B2

4 cosω0t+

 15αA
3B2

8 cos3ω0t+
15αA3B2

8 cosω0t-
5αA3B2

4 cos3ω0t+
5αA3B2

8 cos5ω0t+
5αA3B2

8 cosω0t-

 15αA
2B3

4 sinω0t+
5αA2B3

4 sin3ω0t-
15αA2B3

8 sin3ω0t+
15αA2B3

8 sinω0t+
5αA2B3

8 sin5ω0t+

 5αA
2B3

8 sinω0t-
15αAB4

8 cosω0t+
5αAB4

4 cos3ω0t+
5αAB4

4 cosω0t-
5αAB4

16 cos5ω0t-
5αAB4

16 cos3ω0t-

 5αB
5

8 sinω0t+
5αB5

16sin3ω0t-
αB5

16sin5ω0t (13)

合并同类项得到

x··1+ω2
0x1=-

A
2cos

(ω0+ωp)t-
A
2cos

(ω0-ωp)t-
B
2sin

(ω0+ωp)t+
B
2sin

(ω0-ωp)t+

 -
5α
8
(A2+B2)2-ω1􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Acosω0t-
5α
8
(A2+B2)2+ω1􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Bsinω0t-
5α
16
(A4-2A2B2-3B4)Acos3ω0t-

 5α16
(3A4+2A2B2-B4)Bsin3ω0t-

α
16
(A4-10A2B2+5B4)Acos5ω0t-

α
16
(5A4-10A2B2+B4)Asin5ω0t, (14)

其中包含频率的谐波函数ω0、3ω0、5ω0、ω0±ωp.令

ω0-ωp=-ω0 →ω0=
ωp

2
(15)

将式(15)代入到式(14)得到

x··1+
ω2
p

4x1= -
5α
8
(A2+B2)2-(ω1+

1
2
)􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Acos12ωpt-
5α
8
(A2+B2)2+(ω1-

1
2
)􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Bsin12ωpt-

 5α16
(A4-2A2B2-3B4)+

1
2

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Acos32ωpt-
5α
16
(3A4+2A2B2-B4)+

1
2

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Bsin32ωpt-

 α
16
(A4-10A2B2+5B4)Acos52ωpt-

α
16
(5A4-10A2B2+B4)Asin52ωpt. (16)

需要同时满足以下条件才可消去永年项

-
5α
8
(A2+B2)2- ω1+

1
2  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 A=0,(17)

5α
8
(A2+B2)2+ ω1-

1
2  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 B=0, (18)

继而可得

ω1=±
1
2
, (19)

所以第一共振舌过渡曲线的幂级数为

ω2
n =

ω2
p

4 +
1
2ε+o(ε5), (20)

ω2
n =

ω2
p

4 -
1
2ε+o(ε5). (21)

同理可以求得第二共振舌过渡曲线的幂级数为

ω2
n =ω2

p-
1
12ω2

p
ε2+o(ε5), (22)

ω2
n =ω2

p+
5
12ω2

p
ε2+o(ε5). (23)

3 第一舌分岔

令A =Rcosθ,B =Rsinθ,代入式(17)和式

(18)得到

-
5α
8R4- ω1+

1
2  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Rcosθ=0, (24)

5α
8R4+ ω1-

1
2  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 Rsinθ=0. (25)
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通过解式(24)和式((25)可以得到9个平衡点

Ri(i=1,2,…,8,9)分别为

R1=0, (26)

R4
2,3,4,5=-

8
5α ω1-

1
2  ,

θ=
π
2
,3π
2
,5π
2
,7π
2
, (27)

R4
6,7,8,9=-

8
5α ω1+

1
2  , 

θ=0,π,2π,3π

(28)

这些平衡点的局部稳定性由式(17)和式(18)所对应的雅可比矩阵

  J=

5α
8
(4A3B+4AB3) 5α

8
(A4+6A2B2+5B4)+ ω1-

1
2  

-
5α
8
(5A4+6A2B2+B4)- ω1+

1
2  -

5α
8
(4A3B+4AB3)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(29)

的特征值λ决定,

λ2-Tr(J)λ+Det(J)=0 (30)

其中

Tr(J)≡0,

Det(J)=
125(A2+B2)4α2

64 -
1
4+

 
5[3(A2+B2)2ω1-A4+B4]α

4 +ω2
1 (31)

又由于雅可比矩阵J 的迹Tr(J)恒等于0,显然可

知雅可比矩阵J 的两个特征值大小相同,但符号

相反.且若Det(J)>0,两个特征值都在虚轴上,

平衡点是稳定的(中心);若Det(J)<0,两个特征

值都在实轴上,平衡点是不稳定的(鞍).因此稳定

性的变化发生在Det(J)=0时.将式(29)转化为极

坐标,代入式(26)~(28)得到平衡点处Det(J)的

表达式,分别如下

对于R1:Det=ω2
1-
1
4

(32)

对于R2,3,4,5:Det=-4ω1+2 (33)

对于R6,7,8,9:Det=+4ω1+2 (34)

不同ω1 值下平衡点的行列式如图2所示.
(1)当α>0时实平衡点存在的条件为:

图2 第一个共振舌附近平衡点的行列式

Fig.2 The
 

determinant
 

of
 

the
 

equilibrium
 

near
 

the
 

first
 

resonant
 

tongue

对于平衡点R1:存在任意的ω1,都使得平衡

点R1=0;
 

对于平衡点R2,3,4,5:存在任意的ω1 <1/2,都
使得平衡点R2,3,4,5 >0;

 

对于平衡点R6,7,8,9:存在任意的ω1 <-1/2,

都使得平衡点R6,7,8,9 >0.
(2)当α<0时实平衡点存在的条件为
 

对于平衡点R1:存在任意的ω1,都使得平衡

点R1=0;
 

对于平衡点R2,3,4,5:存在任意的ω1 >1/2,都
使得平衡点R2,3,4,5 >0;

 

对于平衡点R6,7,8,9:存在任意的ω1 >-1/2,

都使得平衡点R6,7,8,9 >0.
当穿越过渡曲线时,对于恒定的ε值,会发生

超临界和亚临界叉式分岔(即新平衡点的产生).图

3给出了α>0和α<0两种情况的分岔示意图.
对于α<0,要求R1、R2,3,4,5、R6,7,8,9 在第一

个舌形区域的左侧,原点是唯一的中心.同时随着

逐渐地增加ω1的值并接近左侧的过渡曲线,R1和

R6,7,8,9 的行列式值之和为0.然后,当穿过左侧过

渡曲线时,R1 和R6,7,8,9 处Det(J)穿过ω1 轴,此
时发生超临界叉式分岔,使得原点处的平衡点变为

鞍点,并且产生两个新的中心.图4(a)用数值仿真

的结果验证了分析结果的正确性,α=-0.7.随着

ω1 的值进一步增加并且穿过右侧的过渡曲线时,

R1 和R2,3,4,5 处Det(J)穿过ω1 轴,此时发生亚临

界叉式分岔,原点再次变为中心,并且产生两个新

的鞍点.
对于α>0,要求R1、R2,3,4,5、R6,7,8,9 在第一

个舌形区域的右侧,原点是唯一的中心.同时通过

逐渐减小ω1的值并接近右侧的过渡曲线时,R1和

R2,3,4,5的行列式之和也等于0.然后,当穿过右侧过

渡曲线时,R1 和R2,3,4,5 处Det(J)穿过ω1 轴,此时
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图3 第一舌周围的超临界和亚临界叉式分岔,
分别用绿色和红色星号表示

Fig.3 The
 

supercritical
 

and
 

subcritical
 

pitchfork
 

bifurcations
 

near
 

the
 

first
 

resonant
 

tongue,
 

which
 

are
 

distinguished
 

by
 

green
 

and
 

red
 

asterisks,
 

respectively

图4 α取不同值时的分岔图
Fig.4 The

 

bifurcation
 

diagrams
 

corresponding
 

to
 

different
 

α

发生超临界叉式分岔,使得原点处的平衡点变为鞍

点,并且产生两个新的中心.随着ω1 的值进一步减

小并且穿过左侧的过渡曲线时,R1 和R6,7,8,9 处

Det(J)逐渐趋近于0并且穿过ω1 轴,此时发生亚

临界叉式分岔,原点再次变为中心,并且产生两个

新的鞍点.图4(b)用数值仿真的结果验证了分析

结果的正确性,α=0.7.图4(c)给出了利用延续算

法检测的分岔点,此处超临界和亚临界叉式分岔都

标记为BP.取定参数α=0.7,图5~图7给出了ω1

分别取1、0、-1时,依赖于不同初始值的多吸引子

图5 α=0.7,ω1=1时和不同初始值下共存吸引子的相图

Fig.5 The
 

phase
 

diagram
 

of
 

coexisting
 

attractors
 

with
 

different
 

initial
 

values,
 

α=0.7,ω1=1

图6 α=0.7,ω1=0时和不同初始值下共存吸引子的相图

Fig.6 The
 

phase
 

diagram
 

of
 

coexisting
 

attractors
 

with
 

different
 

initial
 

values,
 

α=0.7,ω1=0

图7 α=0.7,ω1=-1时和不同初始值下共存吸引子的相图

Fig.7 The
 

phase
 

diagram
 

of
 

coexisting
 

attractors
 

with
 

different
 

initial
 

values,
 

α=0.7,ω1=-1
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共存的相图.这些数值结果叠加在A-ω1-B 参数空

间中,如图8所示,数值结果与理论分析结果完全

一致.
  

图8 α=0.7时系统在A-ω1-B 参数空间中的分岔图

Fig.8 The
 

bifurcation
 

diagram
 

of
 

the
 

system
 

in
 

the
 

A-ω1-B
 

parameter
 

space
 

when
 

α=0.7

4 结论
  

本文以底鼓触发器为实物模型,通过底鼓触发

器中的击槌摆动过程建立了一个类 Kapitza单摆

系统的模型,并推导出所对应的含有五次非线性项

的 Mathieu-Dufffing方程.通过摄动法,精确地获

得了过渡曲线的幂级数展开式,特别是第一共振舌

域与第二共振舌域的过渡曲线的具体表达式,从而

明确了系统发生动力学行为的关键的参数范围.选
取第一共振舌域对其进行分岔分析时,不但精确地

确定了多个平衡点,还通过雅可比矩阵特征值分

析,系统地判定了这些平衡点的稳定性变化,当平

衡点穿越过渡曲线时,会发生超临界和亚临界叉式

分岔,并给出了α>0和α<0两种情况的分岔示意

图.最后通过数值模拟验证了推导的正确性.这一

结论揭示了超临界叉式分岔与亚临界叉式分岔的

发生机制,并讨论了分岔与非线性参数之间的依赖

关系.
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