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Research on Feedforward Suppression of Direct Disturbances in Precision

Vibration Isolators”

Sun Yu'" Cheng Wenbao' Yu Kaicheng® Yang Xiaofeng'™
(1. Academy for Engineering and Technology, Fudan University, Shanghai 200433, China)
(2. School of Microelectronics, Fudan University. Shanghai 200433, China)

Abstract With the rapid development of technology, vibration control in high-precision fields such as
semiconductor manufacturing has become increasingly important. Active vibration isolators, as a key vi-
bration control technology, can effectively reduce the impact of external and internal vibrations on equip-
ment performance. However, existing control methods still face limitations when addressing the challen-
ges of high-precision isolation systems, particularly when dealing with direct disturbances caused by the
motion platform. This paper proposes a new active vibration isolation scheme that combines drive force
feedforward and iterative learning control. By dynamically modeling the isolation platform, the direct
disturbances caused by the motion platform are thoroughly analyzed, and a dual strategy based on drive
force feedforward compensation and iterative learning control is designed. The feedforward compensation
accurately predicts and mitigates part of the disturbances from the motion platform, while iterative
learning control iteratively optimizes the compensation strategy., effectively reducing the influence of
nonlinear disturbances such as friction and improving the control precision of the system. Experimental

results show that the proposed method significantly improves the vibration isolation performance of the
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system, especially in terms of suppressing nonlinear disturbances.

Key words active vibration isolator,

learning
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Schematic of the interaction model between the motion

Fig. 2
platform and the isolation platform
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Fig. 3 The diagram on the left is the force analysis in the {ront view,

while the diagram on the right is the force analysis in the left view
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Fig.5 Simulation graph of the root mean square of the isolation

acceleration in the Y-direction
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