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Analysis and Experimental Study on Vibration Isolation Characteristics of

a High-Load Compact Quasi-Zero-Stiffness Isolator”

Li Haipeng' Chang Yaopeng® Pan Hongbin' Gao Jinghang' Zhou Jiaxi''
(1. School of Mechanical and Vehicular Engineering, Hunan University, Changsha 410082)

(2. School of Energy and Power Engineering, Changsha University of Science&. Technology, Changsha 410114)

Abstract The high static stiffness and low dynamic stiffness characteristics of the quasi-zero-stiffness i-
solator effectively address the conflict between low stiffness and high load-bearing capacity in traditional
isolators. However, most existing quasi-zero-stiffness isolators are designed for small load conditions
and have a less compact structure, making them difficult to apply in situations with higher loads and
limited installation space. In view of this, a high-load compact quasi-zero-stiffness isolator is proposed
and its heavy-load low-frequency vibration isolation characteristics is verified through experiments. The
isolator utilizes coaxial permanent magnet rings to provide negative stiffness and achieves quasi-zero stiff-
ness by paralleling with circumferentially distributed coil springs. The restoring force expression of the
coaxial permanent magnet rings is derived using the equivalent magnetic charge method, and finite ele-
ment simulation of the permanent magnet rings is conducted using COMSOL software to verify the accu-

racy of the analytical expression. Subsequently, a nonlinear dynamic theoretical model of the vibration i-
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solation system is established, and the equations are solved using the harmonic balance method. The
theoretical results are also verified using the Runge-Kutta method. Additionally, the influence of system
damping ratio and external excitation amplitude on the system’s amplitude-frequency response and force
transmissibility is discussed. Finally, a prototype of the isolator is fabricated, and quasi-static static
tests and sinusoidal excitation tests are conducted. The results indicate that the coaxial magnet ring qua-
si-zero-stiffness isolator can achieve compact heavy-load low-frequency vibration isolation with an instal-
lation height of 60 mm and a load capacity of 160 kg. When the controlled excitation force amplitude is
20 N, the initial vibration isolation frequency is as low as 3.6 Hz, with a vibration isolation efficiency of
44.3% (5 dB) at 5 Hz and 90% (20 dB) at 10 Hz.
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Fig. 1 Heavy-load low-frequency vibration isolator
(1. Inner magnetic ring; 2. Upper shell; 3. Outer magnetic ring;
4. Coil spring; 5. Guide shaft; 6. Buffer rubber; 7. Lower shell)
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Fig. 2 Structure of magnetic ring with negative stiffness:

(a) Cross-sectional view; (b) Top view
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Table 1 The main parameters of the inner and
outer magnetic rings

Parameters Value
Magnetic flux density: T, 1.44 T
Relative permeability: px, 1
Inner radius of inner magenet: R, 10 mm
Outer radius of inner magenet: R, 60 mm
Inner radius of outer magenet: R, 75 mm
Inner radius of outer magenet: R, 80 mm
Thickness of magnet: [ 10 mm
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Fig. 3 Finite element simulation of coaxial magnetic rings:

(a) Meshing; (b) Magnetic {lux density magnitude

TEAT BRIT AT B o0 M7, 8 -4 0 + 15 mm
A Rl PN 23 A A I B 22 () A . 1 4 () 5 1T 4
(b) 73 3l J 7R 1 [7) Al e B 14 7 — 588 56 28 R MY JEE —
PR 5 A B B A5 A7 BROT % 22 6] B X EE. WL &
B BRI A R AE [R5 7 B OR T BROC 2 B i 245
R R 2E B JEUIN AR 1 3 20 T DL B S R
R/NBIRE AT 5. 0152 ) e R 28 0 1706 o W JE i
RRZEN 120, P, 3= 22 4b F W] 45 32 (9 JE Rl 2
P I B T 7 A P Y 0 T

400 20

theoretical
e finite element

theoretical
® finite element

200 or
£

Z

] =20

w0 z
«E

-200 -40

—400 —60

=150 -75 0.0 75 150 -150 -75 0.0 5 15.0

z/mm z/mm
B 4 B HTA BRICHT B Ca) 345 B HE 5 (b) R 47 BLR) He
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Fig. 5 Influence of spring stiffness on vibration isolation:
(a) Influence of spring stiffness on restoring force;

(b) Influence of spring stiffness on stiffness
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Fig. 9 Influence of excitation amplitude on vibration isolation:
(a) Influence of amplitude on the amplitude-frequency curve;

(b) Influence of amplitude on transmissbility
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(b) Force-displacement curve
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Fig. 12 Dynamic testing system: (a) Vibration testing system;

(b) Excitation setup and load arrangement
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Fig. 13 Free damping testing: (a) Damping testing system;

(b) Free damping vibration form
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Fig. 14 Vibration isolation performance of the vibration isolator:
(a) Comparison results of transmissbility;

(b) Comparison results of vibration isolation efficiency
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