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摘要 本文基于光滑处理后的Stribeck摩擦模型,建立了二自由度盘式制动系统非线性动力学模型.采用

Routh-Hurwitz判据对平衡点稳定性进行分析,并讨论了不同参数对制动系统稳定性的影响.利用 Hurwitz
判据求得Hopf分岔点,再引入投影法计算分岔点处的第一Lyapunov系数并判断Hopf分岔类型,并对理论

分析结果进行了数值验证.研究表明:当制动盘角速度较低(ω<0.42
 

rad/s)时,系统始终保持稳定;而角速

度较高时,增大衰减因子或降低静摩擦系数可显著提高稳定性;随着制动力的增大和角速度的减小,系统的

不稳定区域也随之扩大;而合理设计制动盘与刹车片的刚度比能优化系统稳定性;此外,系统在临界参数下

发生亚临界 Hopf分岔,系统平衡点的稳定性发生改变,产生不稳定的极限环,从而引发自激振动.
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Abstract Based
 

on
 

the
 

smoothed
 

Stribeck
 

friction
 

model,
 

a
 

nonlinear
 

dynamic
 

model
 

of
 

a
 

two-degree-of-
freedom

 

disc
 

braking
 

system
 

was
 

established.
 

The
 

stability
 

of
 

the
 

equilibrium
 

points
 

was
 

analyzed
 

using
 

the
 

Routh-Hurwitz
 

criterion,
 

and
 

the
 

influence
 

of
 

different
 

parameters
 

on
 

the
 

stability
 

of
 

the
 

braking
 

system
 

was
 

discussed.
 

The
 

Hopf
 

bifurcation
 

point
 

was
 

obtained
 

using
 

the
 

Hurwitz
 

criterion,
 

and
 

the
 

first
 

Lyapunov
 

coefficient
 

at
 

the
 

bifurcation
 

point
 

was
 

calculated
 

by
 

introducing
 

the
 

projection
 

method
 

to
 

determine
 

the
 

type
 

of
 

Hopf
 

bifurcation.
 

The
 

theoretical
 

analysis
 

results
 

were
 

verified
 

through
 

numerical
 

simulations.
 

The
 

study
 

shows
 

that
 

when
 

the
 

angular
 

velocity
 

of
 

the
 

brake
 

disc
 

is
 

low,
 

the
 

system
 

re-
mains

 

stable;
 

whereas
 

when
 

the
 

angular
 

velocity
 

is
 

high,
 

increasing
 

the
 

attenuation
 

factor
 

or
 

reducing
 

the
 

dynamic
 

friction
 

coefficient
 

can
 

significantly
 

improve
 

the
 

stability.
 

As
 

the
 

braking
 

force
 

increases
 

and
 

the
 

angular
 

velocity
 

decreases,
 

the
 

unstable
 

region
 

of
 

the
 

system
 

also
 

expands;
 

moreover
 

a
 

reasonable
 

design
 

of
 

the
 

stiffness
 

ratio
 

between
 

the
 

brake
 

disc
 

and
 

the
 

brake
 

pad
 

can
 

optimize
 

the
 

stability
 

of
 

the
 

system.
 

In
 

addition,
 

the
 

system
 

undergoes
 

subcritical
 

Hopf
 

bifurcation
 

under
 

critical
 

parameters,
 

where-
by

 

the
 

stability
 

of
 

the
 

equilibrium
 

point
 

changes,
 

an
 

unstable
 

limit
 

cycle
 

is
 

generated,
 

and
 

self-excited
 

vi-
bration

 

is
 

triggered.
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引言
  

制动系统是汽车安全的核心部件之一,其性能

直接影响车辆的制动效能、稳定性和舒适性.盘式

制动系统因其散热性好、制动响应快、维护方便等

优势,现已成为现代乘用车的主流制动方案.然而,

在制动过程中,刹车片和摩擦盘之间的摩擦可能会

导致振动的产生,进而引起噪声问题[1],甚至影响

制动的性能,例如:黏滑振动和模态耦合振动分别

引发蠕变呻吟和制动尖叫现象[2].因此,建立准确

的动力学模型并分析其非线性行为,对消除摩擦制

动、抑制振动噪声具有重要意义[3].
近几十年来,国内外在摩擦振动方面取得了大

量有意义的研究成果.通过理论研究建立盘式制动

器系统的简化数学模型是探讨摩擦诱发振动现象

形成和演化的重要研究方法[4,5].Popp[6]通过单自

由度模型,发现摩擦系数随相对速度的增加而减

小,法向制动力的波动是摩擦诱发振动的激励机

制.在此基础上,提出了通过增加外阻尼和附加外

激励来降低振动的措施.Hetzler等[7]建立了单自

由度模型,讨论了盘式制动系统的稳定性和局部分

岔现象,并采用指数衰减的摩擦特性来解释制动过

程中的制动尖叫现象.Chen等[8]建立了楔形制动

系统的单自由度(DOF)扭转模型.通过制动力放大

功能可以得出,制动力、摩擦系数、楔角和激振频率

对动态响应影响较大.Shin等[9]采用双自由度模

型,其中制动盘和刹车片与滑动摩擦界面耦合,证
明了当制动盘和摩擦块的固有频率相似时,会发生

耦合效应,降低系统稳定性,更可能发生黏滑振动.

Wei等[10]建立了一种新型双层摩擦片制动系统的

三自由度模型,新结构下制动系统的动力学响应表

明,随着制动力和系统参数的变化,系统的振动模

式由双周期分岔变为混沌.Wang等[11]将盘式制动

系统模型加入轮轨接触关系,建立了高速列车盘式

制动系统的三自由度模型,并进行了黏滑振动分

析.结果表明,随着制动压力的增加,制动系统交替

呈现周期和混沌运动.Zhou等[12]考虑了在轮轨黏

附作用下的四自由度模型,得出了切向刚度主要影

响振幅的变化,而法向刚度是引起振动混沌的主要

因素的结论.Crowther[13]提出了一个四自由度扭

转模型,将传动系统和制动扭转子系统与摩擦副耦

合在一起,他根据库仑定律讨论了耦合系统在低恒

定驱动力矩下的黏滑运动,发现了三种不同制动压

力下的黏滑振动现象.Hu等[14]建立了固定卡钳盘

式制动系统的七自由度模型,包括制动盘、卡钳、内
外刹车片的运动,研究不同制动条件对系统稳定性

的影响.结果表明:制动噪声随制动压力的增大和

制动盘转速的减小而增大.
  

Hopf分岔与系统的极限环和自激振荡密切相

关,属于动力学分岔,具有很高的研究价值.近年

来,国内外学者对非线性动力系统的 Hopf分岔进

行了大量的研究[15,16].Saha等[17]探究了两个不同

的摩擦模型对单自由度动力学系统产生振动的影

响,并通过稳定性分析得到系统发生亚临界 Hopf
分岔时的 Hopf分岔点.Zhang和Dai[18]建立了分

段光滑的铁路轮对模型,研究了车辆参数对 Hopf
分岔特性的影响,指出了耦合区域内 Hopf分岔对

参数变化的敏感性.当分段光滑系统的定常解的周

期轨道出现分岔时,这种现象称为广义 Hopf分

岔.安金凯等[19]建立了一类以空气弹簧拟合的二

自由度垂向振动系统模型,结果表明,当外激励频

率和固有频率的接近程度达到固定值时,系统发生

亚临界Hopf分岔,在分岔点的邻域内稳定焦点失

稳形成不稳定的焦点.周军超等[20]建立了一种基

于空间激扰的跨座式单轨车辆转向架模型,探讨了

不同空间激扰条件下对转向架稳定性的影响,结果

表明,转向架结构参数的改变可引发系统超临界与

亚临界Hopf分岔之间的迁移.Zhang等[21]建立具

有高阶非线性项的近似光滑飞机起落架模型,对

Hopf分岔点附近的动力学行为进行了理论和数值

研究,研究结果为飞机起落架系统的优化设计提供

了理论依据.张瑜等[22]通过添加线性和非线性控

制器对光滑起落架模型的 Hopf分岔行为进行控

制,结果表明,线性控制器能使系统的 Hopf分岔

点后移,从而减小 Hopf分岔的不稳定区域;非线

性控制器在不改变系统 Hopf分岔点的情况下,能

减小Hopf分岔产生的极限环的幅值.Zhang等[23]

建立了一个三自由度非线性气动弹性系统的非线

性响应进行了解析和数值分析,结果表明,当阻尼

系数小于或大于 Hopf分岔线性临界值时,非线性

颤振会发生极限环振荡现象.
  

本文考虑了刹车片的平移运动和制动盘的扭

转运动,应用光滑的Stribeck摩擦模型建立了一个

包含 摩 擦 副 的 二 自 由 度 盘 式 制 动 系 统;采 用
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Routh-Hurwtz矩阵对系统的平衡点的稳定性进行

分析,得到不同参数下系统的稳定区域;通过计算

得到制动系统的 Hopf分岔点并引入投影法得到

系统的第一Lyapunov系数,进而判断出 Hopf分

岔类型,并通过数值模拟进行验证.

1 盘式制动系统的动力学模型
  

简化的盘式制动系统模型如图1所示,根据牛

顿第二定律,得到二自由度盘式制动系统的运动微

分方程为[24]:

Jrθ
··

r+crθ
·

r+krθr=Tf

mbx
··
b+cbx

·
b+kbxb=Ff (1)

式中:mb 代表着刹车片和卡钳的质量;Jr 代表着

制动盘的转动惯量;kb、cb 代表着刹车片的刚度和

阻尼;kr、cr代表着制动盘的刚度和阻尼;xb、θr 分

别代表着刹车片的切向位移和制动盘的扭转位移;

rb 代表着刹车片和制动盘中心的距离,即摩擦半

径;ω 代表制动盘的扭转角速度;FN 表示作用在刹

车片上的法向制动力;vr表示制动盘和刹车片的相

对速度;Ff、Tf分别表示刹车片和制动盘接触界面

产生的摩擦力和摩擦力矩.
  

文章采用Stribeck形式的摩擦模型研究摩擦

非线性问题.该模型将摩擦系数定义为相对速度的

负斜率函数,是指数型摩擦模型.

图1 二自由度盘式制动系统模型图

Fig.1 Dynamic
 

model
 

of
 

the
 

two-degree-of-freedom
 

disc
 

brake
 

system

该模型的表达式如下[25]:

μ(vr)=[μk+(μs -μk)e
-α|vr|]tanh(σvr)

(2)

式中:μk 是动摩擦系数;μs 为静摩擦系数;vr 为制

动盘和刹车片之间的相对速度;α 为指数衰减因

子,其代表着摩擦系数随着相对速度衰减的快慢程

度,σ是平滑控制系数.相对速度vr可以表示为:

vr=(ω+θ
·

r)rb-x·b (3)
  

取μk=0.3,μs=0.5,α=4,σ=50,得到Stri-
beck形式的摩擦模型中的摩擦系数和相对速度之

间的关系,如图2所示.

图2 Stribeck模型曲线图

Fig.2 Curve
 

of
 

Stribeck
 

model
  

摩擦力Ff和摩擦力矩Tf可表示为:
                               

Ff=-μ(vr)FN=-FN[μk+

  (μs-μk)e
-α|vr|]tanh(σvr) (4)

Tf=Fbrb=FN[μk+

  (μs-μk)e
-α|vr|]tanh(σvr)rb (5)

由公式(1)、(4)和(5),最终得到盘式制动系统的状

态方程为:

y
·
1 =y2

y
·
2 =-

cry2+kry1+[μk+(μs-μk)e
-α|vr|]tanh(σvr)FNrb

Jr

y
·
3 =y4

y
·
4 =-

cby4+kby3-[μk+(μs-μk)e
-α|vr|]tanh(σvr)FN

mb

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(6)

式中:y=[y1,y2,y3,y4]为状态变量,且[y1,y2,

y3,y4]=[θr,θ
·

r,xb,x
·
b].

2 稳定性分析
  

令公式(1)右侧方程为0,可以得到平衡点y- =
(y-1,0,y-3,0),当w、rb 都大于0时,此时可以化简
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得到vr=e
-α|(ω+y2)rb-y4|=e

-αωrb ,最终可以得到平衡

点为:

y-1=-
[μk+(μs-μk)e

-αωrb]tanh(σωrb)Frb
kr

y-3=
[μk+(μs-μk)e

-αωrb]tanh(σωrb)F
kb

(7)

由雅可比矩阵可以得到系统的特征方程:
   

λ4+a3λ3+a2λ2+a1λ+a0=0 (8)

式中:

a0=
kbkr
Jrmb

,a1=
cbkr+crkb

Jrmb
+
r2bkb+kr

Jrmb
ξ,

a2=
kr
Jr

+
kb

km
+

cbcr
Jrmb

+
cr+cbr2b
Jrmb

ξ,

a3=
cr
Jr

+
cb
mb

+(
1
mb

+
r2b
Jr
)ξ.

ξ=σF(μk+Δμe
-αωrb)[1-tanh2(σωrb)]-

 αFΔμe
-αωrbtanh(σωrb),

Δμ=μs-μk.
由特征方程(8)得到Hurwitz矩阵为:

 

H =

a3 1 0 0

a1 a2 a3 1

0 a0 a1 a2

0 0 0 a0

􀮠

􀮢
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(9)

由Routh-Hurwitz判据[26]可得,当H 的所有主子

式都大于0时,此时系统所有特征值都有负实部,

系统是稳定的,即:
               

Δ1 >0,Δ2 >0,Δ3 >0,Δ4 >0 (10)

式中:

Δ1=a3,Δ2=a2a3-a1,

Δ3=a3(a2a1-a0a3)-a2
1,

Δ4=a0Δ3.
  

(11)
  

仿真过程中的参数选取基于文献[10],如表1
所示.由稳定性的判定条件即公式(10)得到制动系

统在不同参数下的稳定和不稳定区域,如图3所

示.图中蓝色代表不稳定,黄色代表稳定.黄色和蓝

色交汇处即为系统的稳定边界.
  

首先考虑摩擦特性对制动系统稳定性的影响,

选取参数,FN=1000
 

N,ω∈ [0,15],其他参数固

定不变如表1所示,讨论静摩擦系数μs和衰减因子

α对系统稳定性的影响,如图3(c)和图3(d)所示.
在图3(c)中,α=4.6,μs∈[0.4,0.8],图3(d)中,

μs=0.5,α∈[4,6],从图中得到,当制动盘的角速

度ω 很小,即此时ω<0.42
 

rad/s时,在一定的范

围内,无论摩擦系数和衰减因子为何值,此时系统

都具有稳定性.当ω>0.42
 

rad/s时,随着静摩擦

系数的逐渐增大,系统的不稳定区域也随之增大,

而系统的不稳定区域随着衰减因子的增大而逐渐

减小.所以在设计有关摩擦特性的系数时,可以通

过增大衰减因子或者降低静摩擦系数来扩大制动

系统的稳定区域,进而提高制动系统的稳定性,从
源头上抑制制动尖叫现象的产生.

  

选取参数ω∈ [0.5,15],FN ∈ [0,2000],其
他参数固定不变如表1所示,得到制动力和刹车盘

角速度对制动系统稳定性的影响,如图3(b)所示.
系统的不稳定区域制动力FN 的增加而逐渐扩大,

而随着角速度ω 的增加,系统的稳定区域逐渐增

大,说明在较大的制动力下系统更容易发生不稳定

的运动,此时则需要更大的角速度来使系统重新维

持稳定.选取参数FN=1000
 

N,ω=12.363
 

rad/s,

kb∈[0,6×105],kr∈[0,6×105],同时变化制动

盘与刹车片刚度值对系统稳定性的影响如图3(c)

所示.定义制动盘与刹车片的刚度比为κ,当刚度

比κ在蓝色范围内时系统是不稳定的,从图中可知

单纯地增加制动盘刚度值或刹车片刚度值并不一

定会使系统的稳定性增加,反而会使系统的稳定性

下降.所以合理设计制动盘和刹车片的刚度系数比

值能在很大程度上改善系统的稳定性.

图3 盘式制动系统在不同参数下的稳定和不稳定区域:
(a)ω 和μs的稳定区域;(b)ω 和α的稳定区域;
(c)FN 和ω 的稳定区域;(d)kb和kr的稳定区域

Fig.3 The
 

stable
 

and
 

unstable
 

regions
 

of
 

the
 

disc
 

braking
 

system
 

under
 

different
 

parameters:(a)
 

The
 

stable
 

area
 

of
 

ω
 

and
 

μs;
(b)

 

The
 

stable
 

area
 

of
 

ω
 

and
 

α;(c)
 

The
 

stable
 

area
 

of
 

FN
 and

 

ω
 

;
(d)

 

The
 

stable
 

area
 

of
 

kb and
 

kr
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表1 制动系统参数表

Table
 

1 Parameters
 

of
 

the
 

brake
 

system

Parameter Symbol Value

The
 

quality
 

of
 

the
 

pad mb/kg 2

Inertia
 

moment
 

of
 

the
 

brake Jr/(kg·m
2) 0.65

The
 

stiffness
 

of
 

the
 

pad kb(N/m) 3×105

The
 

damping
 

of
 

the
 

pad cb/(N·m/rad) 1

The
 

stiffness
 

of
 

the
 

brake kr/(N/m) 3×105

The
 

damping
 

of
 

the
 

brake cr/(N·m·rad/s) 1

Friction
 

radius r/m 0.12

Kinetic
 

friction
 

coefficient μs 0.5

Static
 

friction
 

coefficient μk 0.3

Decay
 

factor α 4.6

Smooth
 

parameter σ 50

3 Hopf分岔特性分析

3.1 理论推导
 

以角速度ω 作为分岔参数并取FN=1000
 

N,
其他参数不变如表1所示,得到临界角速度ω0=
12.363

 

rad/s,进而得到Hopf分岔点B(ω0),并代

到其他条件中验证,结果满足横截条件[27].
  

系统在Hopf分岔点处的第一Lyapunov系数

可以由投影法[28]进行推导,推导步骤如下:由于平

衡点不在坐标原点中,将平衡点y- =(y-1,0,y-3,0)
平移到坐标原点中,并在原点处进行泰勒展开得到

方程(12):
              

x· =Ax+F(x) (12)

式中:

x· =

x1

x2

x3

x4

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

,A=

0 1 0 0

-46
 

158.461 -1.516 0 -0.185
0 0 0 1
0 -0.6 -150

 

000 0

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(13)

F(x)=

0

-110.850-0.006x2
2+0.102x4x2-0.425x2

4+0.001x3
2-0.028x2

2x4+0.234x2
4x2-0.651x3

4

0

300.217+0.017x2
2-0.276x2x4+1.150x2

4-0.003x3
2+0.076x2

2x4-0.635x2x2
4+1.763x3

4

􀮠

􀮢
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(14)

通过投影法[28]可以得到对于任意的a、b、c:
 

a=(a1,a2,a3,a4)T,
 

b=(b1,b2,b3,b4)T,
 

c=(c1,c2,c3,c4)T (15)

有多重线性向量函数B(a,b)和C(a,b,c):

 B(a,b)=

0

-0.012a2b2+0.102(a4b2+a2b4)-0.849a4b4
0

0.034a2b2-0.276(a2b4+a4b2)+2.300a4b4

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(16)

C(a,b,c)=

0
0.006a2b2c2-0.056(a2b2c4+a2b4c2+a4b2c2)+0.468(a2b4c4+a4b4c2+a4b2c4)-3.906a4b4c4

0

-0.018a2b2c2+0.152(a2b2c4+a2b4c2+a4b2c2)-1.269(a2b4c4+a4b4c2+a4b2c4)+10.578a4b4c4

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(17)

计算出特征向量p、q为:

p=

1

8.391×10-4i

-8.213-4357.110i
11.250-0.021i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,q=

1
387.299i

-8.213+4357.110i

-1.688×10-6-3181.020i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(18)
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式中:p、q满足Aq=iωq,ATp=-iωq,<p,q>=∑
3

i=1
p-iq=1.由特征向量p、q得到:

B(q,q)=

0

-2.418×1012-9.250×109i
0

6.550×1012+2.505×1010i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,
 

B(q,q-)=

0

-2.418×1012+1.364i
0

6.550×1012-0.407i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(19)

C(q,q,q-)=

0

1.877×1019+3.590×1016i
0

-5.084×1019-9.724×1016i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,
 

A-1B(q,q-)=

5.240×106-2.956×10-6i
0

-4.366×107+2.712×10-6i
0

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(20)

B[q,A-1B(q,q-)]=

0
0
0
0

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,
 

(2ηi-A-1)B(q,q)=

1.746×107+199
 

918.037i

-1.549×108+1.353×1010i

-1.455×107-53
 

870.471i

4.173×107-1.127×1010i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(21)

B[q-,(2ηi-A-1)B(q,q)]=

0

5.108×1013-1.848×1016i
0

-1.383×1014+5.006×1016i

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(22)

通过上述计算,最终可以得到系统在分岔点B处的Lyaounov系数为:

lB1(0)=
1
2η
Re{<p,C(q,q,q-)>-2<p,B[q,A-1B(q,q-)]>+<p,B[q-,(2ηiI-A-1)B(q,q)]>}

   =1.945×1010 >0 (23)

  通过理论推导可以得到系统的第一Lyapunov
系数大于0,系统在分岔点处发生亚临界 Hopf分

岔,产生不稳定的极限环.

3.2 数值模拟

为了验证理论推导的准确性,利用 Matlab软

件对方程进行数值求解验证,得到了系统的特征值

实部的最大值随着角速度ω 变化的曲线,如图4所

示.图中虚线是特征值实部最大值为0的线,可以

看到特征值的实部最大值随着角速度的增大而减

小,当平衡点到达B点时,此时系统的角速度ω=

12.363
 

rad/s,系统特征值实部的最大值曲线穿越

0点,由负值变为正值,即平衡点由稳定变为不稳

定,发生了Hopf分岔,制动系统发生自激振动.
基于上述分析,为了更直观地描述在发 生

Hopf分岔时系统稳定性的变化,对Hopf分岔点B
附近进行数值模拟,得到平衡点随着角速度变化时

的二维和三维分岔图,如图5所示.图中红色代表

不稳定,蓝色代表稳定.从图中可以看到系统在ω=
12.363

 

rad/s时系统发生亚临界 Hopf分岔,系统

由一个不稳定的平衡点分岔产生一个稳定的平衡

点和一个不稳定的极限环,验证了理论推导中对极

限环的类型的判断的准确性.

图4 系统随着ω 变化的特征值实部图
Fig.4 Diagram

 

of
 

the
 

real
 

part
 

of
 

the
 

eigenvalue
 

as
 

ω
 

changes

考虑制动力对制动系统稳定性的影响.选取参

数ω=10
 

rad/s,选取FN 作为分岔参数.结合公式

(10)可计算得到系统的临界制动力FN=271.342
 

N,得到特征方程对应的特征值λ1,2=±387.298i,

λ3,4=-0.758±679.366i,系统在此时发生 Hopf
分岔.通过投影法[28]得到系统的第一Lyapunov系

数为:l1(0)=5.277×109>0,此时发生的Hopf分岔
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是亚临界的.在 Hopf分岔点附近进行数值模拟,得
到图6和图7.当FN=281.758

 

N时,系统在相空间

的状态为一个不稳定的平衡点和一个稳定的极限

环.随着制动力的减小,系统在FN=271.342
 

N时发

生亚临界Hopf分岔,平衡点的稳定性发生变化,其
由不稳定变为稳定,并在其邻域内产生一个不稳定

的极限环.当FN 继续减小到241.758
 

N时,系统在

相空间的状态为一个稳定平衡点、一个不稳定的极

限环和一个稳定的极限环.由于制动系统发生Hopf
分岔时,系统的运动状态可能发生突变从平衡点跃

迁至大幅度的极限环运动,所以要将制动力限制在

241.758
 

N以下来避免Hopf分岔的发生.

图5 系统随着ω 变化时平衡点的分岔图:(a)二维分岔图;
(b)三维分岔图

Fig.5 Bifurcation
 

diagram
 

of
 

the
 

equilibrium
 

point
 

of
 

the
 

system
 

as
 

ω
 

changes:
 

(a)
 

Two-dimensional
 

bifurcation
 

diagram;
 

(b)
 

Three-dimensional
 

bifurcation
 

diagram

图6 系统在不同FN 下分岔点附近的相图:
 

(a)FN=241.758
 

N;
(b)FN=281.758

 

N
Fig.6 Phase

 

diagrams
 

of
 

the
 

system
 

near
 

the
 

bifurcation
 

point
with

 

different
 

FN:
 

(a)FN=241.758
 

N;(b)FN=281.758
 

N

图7 系统随着FN 变化时平衡点的分岔图:(a)二维分岔图;
(b)三维分岔图

Fig.7 Bifurcation
 

diagram
 

of
 

the
 

equilibrium
 

point
 

of
 

the
 

system
 

as
 

FN
 changes:

 

(a)
 

Two-dimensional
 

bifurcation
 

diagram;
 

(b)
 

Three-dimensional
 

bifurcation
 

diagram

4 结论
  

本文采用Stribeck形式的摩擦模型,建立二自

由度盘式制动系统非线性动力学模型.基于 Hur-
witz矩阵对系统在不同参数下的稳定性进行分析,

得到系统的稳定区域,在此基础上利用投影法对系

统的Hopf分岔进行分析,得到第一Lyapunov系

数,根据其正负号判断 Hopf分岔类型,并通过数

值模拟分析验证.主要结论如下:
      

(1)盘式制动系统的稳定性受摩擦特性、制动

力和刚度比等因素影响显著.增大制动力会扩大制

动系统的不稳定区域,而提高角速度可抵消其负面

影响,设计合理的刚度比对提高制动系统的稳定性

也至关重要.当制动盘的角速度小于0.42
 

rad/s时,

系统始终保持稳定,当角速度大于该值时,可以通

过减小动静摩擦系数的差值或增大衰减因子来抑

制不稳定振动现象.在对制动系统材料进行设计选

取时,要将摩擦材料的衰减因子设计在较大的范围

内,并选择静摩擦系数较低的材料,从而在源头上

抑制制动尖叫现象的产生.
   

(2)系统在临界角速度ω0=12.363
 

rad/s和临
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界制动力 FN=271.342
 

N 时,系统的第一 Lya-

punov系数为正值,发生亚临界Hopf分岔,平衡点

由不稳定变成稳定,产生不稳定的极限环,引发自

激振动.数值模拟证实了分岔点附近平衡点稳定性

的突变以及极限环的产生,与理论分析一致,这为

盘式制动系统的安全范围提供了边界.在实际应用

中,可以通过施加控制策略确保系统工作点远离此

边界,防止因Hopf分岔而引发剧烈的自激振动.

参考文献

[1] ELMAIAN
 

A,
 

GAUTIER
 

F,
 

PEZERAT
 

C,
 

et
 

al.
 

How
 

can
 

automotive
 

friction-induced
 

noises
 

be
 

related
 

to
 

physical
 

mechanisms[J].
 

Applied
 

Acous-

tics,
 

2014,
 

76:
 

391-401.
 

[2] DONG
 

C
 

L,
 

MO
 

J
 

L,
 

YUAN
 

C
 

Q,
 

et
 

al.
 

Vibration
 

and
 

noise
 

behaviors
 

during
 

stick-slip
 

friction
 

[J].
 

Tribology
 

Letters,
 

2019,
 

67(4):
 

103.
 

[3] BUTLIN
 

T,
 

WOODHOUSE
 

J.
 

A
 

systematic
 

ex-

perimental
 

study
 

of
 

squeal
 

initiation
 

[J].
 

Journal
 

of
 

Sound
 

and
 

Vibration,
 

2011,
 

330(21):
 

5077-5095.
 

[4] BOWDEN
 

F.P.,
 

LEBEN
 

L.
 

The
 

nature
 

of
 

sliding
 

and
 

the
 

analysis
 

of
 

friction
 

[J].
 

Royal
 

Society
 

of
 

London.
 

Series
 

A:
 

Mathematical
 

and
 

Physical
 

Sciences,
 

1939,
 

169(938):
 

371-391.
[5] ANDREAUS

 

U,
 

CASINI
 

P.
 

Dynamics
 

of
 

friction
 

oscillators
 

excited
 

by
 

a
 

moving
 

base
 

and/or
 

driving
 

force
 

[J].
 

Journal
 

of
 

Sound
 

and
 

Vibration,
 

2001,
 

245(4):
 

685-699.
 

[6] POPP
 

K.
 

Modelling
 

and
 

control
 

of
 

friction-induced
 

vibrations
 

[J].
 

Mathematical
 

and
 

Computer
 

Model-

ling
 

of
 

Dynamical
 

Systems,
 

2005,
 

11(3):
 

345-

369.
 

[7] HETZLER
 

H,
 

SCHWARZER
 

D,
 

SEEMANN
 

W.
 

Analytical
 

investigation
 

of
 

steady-state
 

stability
 

and
 

Hopf-bifurcations
 

occurring
 

in
 

sliding
 

friction
 

oscil-

lators
 

with
 

application
 

to
 

low-frequency
 

disc
 

brake
 

noise
 

[J].
 

Communications
 

in
 

Nonlinear
 

Science
 

and
 

Numerical
 

Simulation,
 

2007,
 

12(1):
 

83-99.
 

[8] CHEN
 

L,
 

XI
 

G.
 

Stability
 

and
 

response
 

of
 

a
 

self-am-

plified
 

braking
 

system
 

under
 

velocity-dependent
 

ac-

tuation
 

force
 

[J].
 

Nonlinear
 

Dynamics,
 

2014,
 

78
(4):

 

2459-2477.
 

[9] SHIN
 

K,
 

BRENNAN
 

M
 

J,
 

OH
 

J
 

E,
 

et
 

al.
 

Analysis
 

of
 

disc
 

brake
 

noise
 

using
 

a
 

two-degree-of-freedom
 

model
 

[J].
 

Journal
 

of
 

Sound
 

and
 

Vibration,
 

2002,
 

254(5):
 

837-848.
 

[10] WEI
 

D
 

G,
 

SONG
 

J
 

W,
 

NAN
 

Y
 

H,
 

et
 

al.
 

Analysis
 

of
 

the
 

stick-slip
 

vibration
 

of
 

a
 

new
 

brake
 

pad
 

with
 

double-layer
 

structure
 

in
 

automobile
 

brake
 

system
 

[J].
 

Mechanical
 

Systems
 

and
 

Signal
 

Processing,
 

2019,
 

118:
 

305-316.
 

[11] WANG
 

Q,
 

WANG
 

Z
 

W,
 

MO
 

J
 

L,
 

et
 

al.
 

Nonlinear
 

behaviors
 

of
 

the
 

disc
 

brake
 

system
 

under
 

the
 

effect
 

of
 

wheel-rail
 

adhesion
 

[J].
 

Tribology
 

International,
 

2022,
 

165:
 

107263.
 

[12] ZHOU
 

H
 

Y,
 

WANG
 

Z
 

W,
 

WANG
 

Q,
 

et
 

al.
 

Dy-

namic
 

models
 

and
 

analysis
 

of
 

key
 

factors
 

influencing
 

stick-slip
 

vibration
 

in
 

disc
 

brake
 

system
 

[J/OL].
 

Railway
 

Engineering
 

Science,
 

2025[2025-08-02].
 

https://doi.org/10.1007/s40534-025-00379-3.
 

[13] CROWTHER
 

A
 

R,
 

SINGH
 

R.
 

Identification
 

and
 

quantification
 

of
 

stick-slip
 

induced
 

brake
 

groan
 

e-

vents
 

using
 

experimental
 

and
 

analytical
 

investiga-

tions
 

[J].
 

Noise
 

Control
 

Engineering
 

Journal,
 

2008,
 

56(4):
 

235-255.
 

[14] HU
 

S
 

G,
 

LIU
 

Y
 

C.
 

Disc
 

brake
 

vibration
 

model
 

based
 

on
 

stribeck
 

effect
 

and
 

its
 

characteristics
 

under
 

different
 

braking
 

conditions
 

[J].
 

Mathematical
 

Problems
 

in
 

Engineering,
 

2017,
 

2017(1):
 

6023809.
 

[15] AHMADIAN
 

M,
 

YANG
 

S
 

P.
 

Hopf
 

bifurcation
 

and
 

hunting
 

behavior
 

in
 

a
 

rail
 

wheelset
 

with
 

flange
 

con-

tact
 

[J].
 

Nonlinear
 

Dynamics,
 

1998,
 

15(1):
 

15-

30.
 

[16] KUPPER
 

T,
 

MORITZ
 

S.
 

Generalized
 

Hopf
 

bifur-

cation
 

for
 

non-smooth
 

planar
 

systems
 

[J].
 

Philo-

sophical
 

Transactions
 

of
 

the
 

Royal
 

Society
 

of
 

London
 

Series
 

A:
 

Mathematical,
 

Physical
 

and
 

Engineering
 

Sciences,
 

2001,
 

359(1789):
 

2483-2496.
 

[17] SAHA
 

A,
 

WIERCIGROCH
 

M,
 

JANKOWSKI
 

K,
 

et
 

al.
 

Investigation
 

of
 

two
 

different
 

friction
 

models
 

from
 

the
 

perspective
 

of
 

friction-induced
 

vibrations
 

[J].
 

Tribology
 

International,
 

2015,
 

90:
 

185-197.
 

[18] ZHANG
 

T
 

T,
 

DAI
 

H
 

Y.
 

Loss
 

of
 

stability
 

of
 

a
 

rail-

way
 

wheel-set,
 

subcritical
 

or
 

supercritical
 

[J].
 

Ve-

hicle
 

System
 

Dynamics,
 

2017,
 

55(11):
 

1731-

1747.
 

[19] 安金凯,
 

乐源.
 

二自由度车辆垂向振动系统的 Hopf
分岔[J].

 

四 川 轻 化 工 大 学 学 报(自 然 科 学 版),
 

2024,
 

37(4):
 

11-18.

AN
 

J
 

K,
 

YUE
 

Y.
 

Hopf
 

bifurcation
 

of
 

two-degree-

of-freedom
 

vehicle
 

vertical
 

vibration
 

system
 

[J].
 

Journal
 

of
 

Sichuan
 

University
 

of
 

Science
 

&
 

Engi-

93



动 力 学 与 控 制 学 报 2026年第24卷

neering
 

(Natural
 

Science
 

Edition),
 

2024,
 

37(4):
 

11-18.
 

(in
 

Chinese)
 

[20] 周军超,
 

黄尚武,
 

胡光忠,
 

等.
 

基于空间激扰的跨

座式单轨车辆转向架 Hopf分岔特性分析[J/OL].
 

西南交通大学 学 报,
 

2024
 

(2024-12-05)[2025-08-

02].https://link.cnki.net/urlid/51.1277.u.

20241204.1730.004.

ZHOU
 

J
 

C,
 

HUANG
 

S
 

W,
 

HU
 

G
 

Z,
 

et
 

al.
 

Hopf
 

bifurcation
 

characteristics
 

analysis
 

of
 

straddle-type
 

monorail
 

vehicle
 

bogie
 

based
 

on
 

spatial
 

perturbations
 

[J/OL].
 

China
 

Industrial
 

Economics,
 

2024
 

(2024-

12-05)[2025-08-02].https://link.cnki.net/urlid/

51.1277.u.20241204.1730.004.
 

(in
 

Chinese)
 

[21] ZHANG
 

Y,
 

ZHANG
 

W,
 

YUE
 

Y.
 

Hopf
 

bifurcation
 

analysis
 

of
 

a
 

nose
 

landing
 

gear
 

system
 

of
 

aircraft
 

[J].
 

International
 

Journal
 

of
 

Bifurcation
 

and
 

Chaos,
 

2024,
 

34(15):
 

2450184.
 

[22] 张瑜,
 

张文,
 

乐源.
 

飞机前起落架模型的Hopf分岔

及控制研究[J].
 

动力学与控制学报,
 

2024,
 

22(8):
 

13-22.

ZHANG
 

Y,
 

ZHANG
 

W,
 

YUE
 

Y.
 

Hopf
 

bifurcation
 

analysis
 

and
 

bifurcation
 

control
 

of
 

aircraft
 

nose
 

landing
 

gear
 

system
 

[J].
 

Journal
 

of
 

Dynamics
 

and
 

Control,
 

2024,
 

22(8):
 

13-22.
 

(in
 

Chinese)
 

[23] ZHANG
 

L,
 

CHEN
 

F
 

Q.
 

Bifurcations
 

and
 

stability
 

analysis
 

for
 

nonlinear
 

oscillations
 

of
 

an
 

airfoil
 

[J].
 

Chaos,
 

Solitons
 

&
 

Fractals,
 

2017,
 

103:
 

220-231.
 

[24] WEI
 

D
 

G,
 

RUAN
 

J
 

Y,
 

ZHU
 

W
 

W,
 

et
 

al.
 

Proper-

ties
 

of
 

stability,
 

bifurcation,
 

and
 

chaos
 

of
 

the
 

tan-

gential
 

motion
 

disk
 

brake
 

[J].
 

Journal
 

of
 

Sound
 

and
 

Vibration,
 

2016,
 

375:
 

353-365.
 

[25] VAN
 

DE
 

VRANDE
 

B
 

L,
 

VAN
 

CAMPEN
 

D
 

H,
 

DE
 

KRAKER
 

A.
 

An
 

approximate
 

analysis
 

of
 

dry-fric-

tion-induced
 

stick-slip
 

vibrations
 

by
 

a
 

smoothing
 

procedure
 

[J].
 

Nonlinear
 

Dynamics,
 

1999,
 

19(2):
 

159-171.
 

[26] NAYFEH
 

A
 

H,
 

BALACHANDRAN
 

B.
 

Applied
 

nonlinear
 

dynamics:
 

analytical,
 

computational,
 

and
 

experimental
 

methods
 

[M].
 

New
 

York:
 

John
 

Wiley
 

&
 

Sons,
 

1995.
 

[27] LIU
 

W
 

M.
 

Criterion
 

of
 

Hopf
 

bifurcations
 

without
 

u-

sing
 

eigenvalues
 

[J].
 

Journal
 

of
 

Mathematical
 

Analysis
 

and
 

Applications,
 

1994,
 

182(1):
 

250-

256.
 

[28] 谢建华,
 

乐源,
 

李登辉.
 

非线性动力学[M].
 

北京:
 

科学出版社,
 

2018.

XIE
 

J
 

H,
 

LE
 

Y,
 

LI
 

D
 

H.
 

Nonlinear
 

system
 

dynamics
 

[M].
 

Beijing:
 

Science
 

Press,
 

2018.
 

(in
 

Chinese)
 

04


