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Abstract Inertial navigation systems often operate in complex mechanical environments. Under condi-
tions of high-speed motion or severe vibration, the output of accelerometers can be affected by the base
angular velocity, leading to measurement errors. Therefore, this paper investigates the formation mechanism
and dynamic characteristics of the output error of the Pendulous Integrating Gyroscopic Accelerometer (PIGA)
under base angular motion. First, starting from the dynamic modeling of the PIGA, a comprehensive error
model incorporating the combined effects of linear acceleration, angular velocity, and angular accelera-
tion is established. Then, based on the simultaneous consideration of three-axis angular velocity and an-
gular acceleration inputs, the error expression of the PIGA is derived. The generation mechanism, mag-
nitude, and coupling relationship with system parameters of error terms related to angular motion are
analyzed, revealing the key error components that significantly impact output accuracy and require com-
pensation. Finally, based on the dynamic simulation model, the influence of base angular motion inputs
on the dynamic response of the PIGA output is studied. The results show that under different combina-
tions of angular velocity and angular acceleration inputs, the error characteristics of the PIGA output ex-

hibit significant differences. Therefore, the effect of dynamic base angular velocity on the PIGA output
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is substantial and should be addressed and compensated for in practical engineering applications.
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