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Design and Dynamics Modeling of an Earthworm-Like Mobile Robot with

Dual Air-Ground Locomotion Modes "

Wang Langting Zhang Shu'
(School of Aerospace Engineering and Applied Mechanics. Tongji University, Shanghai 200092. China)

Abstract To address the limitations of the earthworm-like locomotion robot in rapid locomotion across
open terrains, an earthworm-like locomotion robot with dual air-ground locomotion modes is proposed,
which enhances environmental adaptability and mobility efficiency through integrated aerial flight and
terrestrial peristaltic locomotion. Antagonistic interactions between circular and longitudinal muscles are
simulated using spring steel strips and servo motor-driven fishing lines. The aerial flight mode employs a
tandem dual-tilt ducted configuration, where duct tilt angles are directly driven by servo motors to a-
chieve thrust vector regulation through PID control. A mass-spring-damper model for terrestrial locomo-
tion and a Newton-Euler dynamic model for aerial navigation are established respectively. A modular
control system architecture is developed, integrating bio-inspired actuation, attitude resolution, and
multi-mode coordination. Experimental results demonstrate that single-unit contraction/extension de-
formation reaches 13. 9%, enabling pipeline crawling within 11 ¢cm diameter-constrained environments.
During mode transition, a V-shaped configuration increases vertical duct span by 218. 4%, significantly
enhancing flight stability. The duct system generates maximum lift of 40. 57 N while maintaining total

mass below 2 kg, satisfying basic flight requirements.
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Fig. 12 PID algorithm schematic of pitch control
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Fig. 14 Robot crawling through a pipe
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Fig. 15 Robot in flight
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