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摘要 针对参数不确定性对齿轮系统的影响,运用一种基于Chebyshev多项式的不确定性区间分析方法对

含参数不确定性的齿轮系统动力学特性进行分析.本文考虑完整齿廓曲线,采用势能法计算健康齿轮和裂

纹齿轮的时变啮合刚度.在此基础上,建立6自由度集总参数齿轮系统模型.考虑齿轮质量、轴承支撑刚度

以及弹性模量等参数的不确定性,通过数值仿真的方式,分析不同参数不确定性对健康齿轮系统振动响应

的影响规律.进一步将裂纹的影响纳入考量,深入研究了含齿根裂纹故障的不确定性齿轮系统的区间响应

特性.结果表明:齿轮啮合刚度随裂纹深度的增加而减小,在不确定性参数的影响下,系统会出现“频移”“共

振带”等现象,削弱了系统的稳定性.
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Abstract Aiming
 

at
 

the
 

influence
 

of
 

parameter
 

uncertainty
 

on
 

gear
 

system,
 

an
 

uncertainty
 

interval
 

analysis
 

method
 

based
 

on
 

Chebyshev
 

polynomials
 

is
 

employed
 

to
 

analyze
 

the
 

dynamic
 

characteristics
 

of
 

gear
 

system
 

with
 

parameter
 

uncertainty.
 

In
 

this
 

paper,
 

the
 

complete
 

tooth
 

profile
 

curve
 

is
 

considered,
 

and
 

the
 

potential
 

energy
 

method
 

is
 

employed
 

to
 

calculate
 

the
 

time-varying
 

mesh
 

stiffness
 

of
 

both
 

healthy
 

and
 

cracked
 

tooth.
 

On
 

this
 

basis,
 

a
 

six
 

degree
 

of
 

freedom
 

lumped-parameter
 

gear
 

system
 

model
 

is
 

estab-
lished.

 

The
 

uncertainties
 

of
 

parameters
 

such
 

as
 

gear
 

mass,
 

bearing
 

support
 

stiffness,
 

and
 

Young
 

􀆶
 

s
 

modulus
 

are
 

considered.
 

The
 

influence
 

of
 

these
 

uncertainties
 

on
 

the
 

vibration
 

response
 

of
 

healthy
 

gear
 

system
 

is
 

analyzed
 

through
 

numerical
 

simulation.
 

Furthermore,
 

the
 

interval
 

response
 

of
 

an
 

uncertain
 

gear
 

system
 

with
 

root
 

crack
 

faults
 

is
 

investigated,
 

taking
 

into
 

account
 

the
 

impact
 

of
 

cracks.The
 

results
 

show
 

that
 

the
 

gear
 

meshing
 

stiffness
 

decreases
 

with
 

the
 

increase
 

of
 

crack
 

depth.
 

Under
 

the
 

influence
 

of
 

uncertain
 

parameters,
 

phenomena
 

such
 

as
 

􀆵frequency
 

shift and
 

􀆵resonance
 

band 
 

will
 

occur
 

in
 

the
 

sys-
tem,

 

weakening
 

the
 

stability
 

of
 

the
 

system.
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引言
  

齿轮系统作为机械传动的关键部件,其核心功

能为精确传递动力与运动,广泛应用于航空航天、

能源、机械等领域[1].齿轮副工作时长期承受高强

度的冲击载荷,受材料缺陷、制造误差、极端工况,

或是达到疲劳极限等影响,齿轮可能出现齿根裂

纹、齿面点蚀、轮齿断裂等故障[2,3].这些故障不仅

导致传递精度降低,更可能导致齿轮系统失稳而诱

发灾难.
在齿轮系统中,刚度激励是引起系统振动的主

要因素.对于一般直齿轮而言,轮齿处于不同的啮

合位置时,啮合刚度也不同.此外,齿轮在运转时存

在单齿啮合和双齿啮合的交替转换,啮合刚度会随

之产生周期性突变.当轮齿出现故障时,啮合刚度

将受到影响,可能导致齿轮系统出现异常的振动和

冲击,甚至引发严重的安全事故.针对含故障齿轮

的时变啮合刚度问题,众多学者进行了深入的研

究.Yang等[4]首次提出将啮合势能分为弯曲能、轴

向压缩能和赫兹接触能,计算了轮齿的啮合刚度.
万志国等[5]考虑齿轮基圆与齿根圆半径不相等的

情况,提出一种改进的时变啮合刚度计算方法.

Mohammed等[6]采用抛物线代替直线考虑裂纹引

起的失效体积,解决了严重裂纹状况下啮合刚度计

算误差较大的问题.冯松等[7]建立了考虑齿面点蚀

与磨损的齿轮啮合刚度计算模型,研究了不同点蚀

情况以及不同磨损程度下齿轮啮合刚度的变化情

况.Jiang等[8]建立了考虑齿轮体挠度的啮合模型,

研究了齿根裂纹对裂纹齿及其相邻齿的啮合刚度

的影响.刘杰等[9]基于齿根裂纹到轮齿中心线的距

离,建立了三种裂纹类型下的齿轮啮合模型,计算

了不同裂纹深度时齿轮的啮合刚度.孟宗等[10]建

立了完整的齿廓曲线模型,并分析了多种统计指标

随裂纹扩展程度的变化趋势.Yang等[11]提出了强

调裂纹位置的时变啮合刚度计算方法,以预测同时

存在齿根和齿轮表面裂纹的直齿轮副的啮合刚度.
  

随着工业的发展,齿轮系统的性能和可靠性要

求日益提升,这使得模型中的不确定性分析变得至

关重要[12].在齿轮系统中,不确定性是客观存在

的,其来源是多样的,包括材料特性、边界条件和系

统参数等.针对不确定齿轮系统的动态特性问题,

国内外学者开展了一些研究工作.Kumar等[13]推

导了直齿轮系统的等效离散方程,并分析了随机传

递误差对动载荷系数的影响.邓绪山等[14]构建了

以齿形为随机变量的系统模型,分析了基于随机误

差的齿轮系统幅频响应特性.陈会涛等[15]研究了

随机误差和外部激励对含时变啮合刚度和齿侧间

隙的齿轮系统非线性动态响应的影响.Wen等[16]

考虑齿轮系统的齿侧间隙非线性,采用路径积分法

在概率域中捕捉随机响应.廖映华等[17]在啮合刚

度的确定性表达式后加入随机分量,利用服从正态

分布的随机变量来描述其随机不确定性,分析了两

级人字齿轮系统的动态响应特性.Ma等[18]提出了

一种基于Chebyshev展开和模态叠加的边界修正

区间分析方法.Wei等[19]利用最小二乘法提高了

Chebyshev区间分析方法的计算效率,并通过试验

分析了不同不确定参数对齿轮系统幅频响应的影

响.邱继伟等[20]提出了一种基于随机-区间混合

不确定性的二阶可靠性分析方法,对螺旋锥齿轮结

构的可靠性进行了分析.
  

综上所述,尽管现有研究在裂纹故障分析或不

确定性建模方面已取得一定成果,但多数仍聚焦于

单一因素的分析,缺乏对二者耦合效应的系统研

究.在齿轮系统不确定性分析中,啮合刚度的建模

往往采用简化模型,或直接通过傅里叶级数进行拟

合,精度有限.另一方面,传统的概率模型在统计信

息不足的情况下适用性较差.相比之下,Chebyshev
区间分析方法无需依赖精确的概率分布信息,能够

直接给出不确定参数的取值范围,特别适用于实际

工程中缺乏统计数据支持的不确定性问题.该方法

在兼顾计算效率与结果稳定性方面展现出良好优

势,具有广泛的应用潜力.
  

本文以6自由度直齿轮系统为研究对象,将齿

轮轮齿视为以齿根圆为边界的变截面悬臂梁.考虑

完整的齿廓曲线,基于势能法计算出不同裂纹深度

下的时变啮合刚度.进一步地,结合Chebyshev区

间分析方法建立了不确定性齿轮系统分析模型.在
此基础上,深入探讨了不同的不确定参数对齿轮系

统的振动响应的影响,厘清一维不确定和多源不确

定情况下齿轮系统区间响应的变化规律.接着考虑

裂纹的影响,研究了含齿根裂纹故障的不确定性齿

轮系统的区间响应.本文的研究结果可以为齿轮系

统的振动响应预测提供一定的技术支撑.

1 齿轮时变啮合刚度计算
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1.1 健康齿轮时变啮合刚度计算
  

如图
 

1所示,齿轮轮齿被视为以齿根圆为边界

的变截面悬臂梁.轮齿齿廓由三部分组成,分别是:

过渡曲线AB、渐开线曲线BC 和齿顶曲线CD.根
据势能法,轮齿啮合过程中的弯曲势能Ub、轴向压

缩势能Ua 和剪切势能Us 计算如下[4]:

Ub=
F2

2kb
=∫

xF

xA

Fb(xF -x)-Fah  2

2EIx
dx (1)

Ua=
F2

2ka
=∫

xF

xA

F2
a

2EAx
dx (2)

Us=
F2

2ks
=∫

xF

xA

1.2F2
b

2GAx
dx (3)

式中,kb、ka和ks分别表示弯曲、轴向压缩和剪切刚

度,Fa 和Fb 分别表示啮合力F 在径向和切向的分

力,E 和G 分别代表弹性模量和剪切模量,Ix 和Ax

分别代表与O 点距离为x 的截面转动惯量和面积.
过渡曲线方程表达式如下

x=Rpcosϕ-
a1

sinγ+r  sin(γ-ϕ)

y=Rpsinϕ-
a1

sinγ+r  cos(γ-ϕ)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(4)

式中,r=c*m/(1-sinα0),a1=(h*
a +c*)m-r,

b1=πm/4+h*
amtanα0+rcosα0,ϕ=(a1/tanγ+

b1)/Rp,Rp为分度圆半径,α0为压力角,h*
a 为齿顶

高系数,c* 为齿顶间隙系数.
  

根据渐开线的性质,其曲线方程可表示如下

x=Rb (α2+α)sinα+cosα  

y=Rb (α2+α)cosα-sinα   (5)

式中,Rb 为齿轮基圆半径.

图1 健康齿轮模型

Fig.1 Model
 

of
 

a
 

healthy
 

gear
 

tooth

结合过渡曲线方程和渐开线曲线方程,Ix 和

Ax 计算如下

 Ix =
2
3h

3
xL (6)

 Ax =2hxL (7)

 hx =

hx1=Rpsinϕ-
a1

sinγ+r  cos(γ-ϕ),

xA ≤x≤xB

hx2=Rb (α2+α)cosα-sinα  ,

xB <x≤xC

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁􀪁

(8)

式中,L 表示轮齿宽度.
  

考虑齿面接触影响,赫兹接触刚度计算如下

1
kh

=
4(1-υ2)
πEL

(9)
  

齿轮基体在齿轮啮合过程中也会产生变形,基
体刚度计算如下[10]

1
kf

=
cos2α1
EL L* uf

Sf  
2

+􀭠
􀭡

􀪁
􀪁

  M * uf
Sf  +P*(1+Q*tan2α1)

􀭤
􀭥

􀪁
􀪁 (10)

式中,L*、M *、P*、Q*、uf 和Sf 等参数如文献

[10]所示.
  

综上所述,单对轮齿啮合时的刚度计算如下

kt=
1

1
kb1

+
1
kb2

+
1
ka1

+
1
ka2

+
1
ks1

+
1
ks2

+
1
kf1

+
1
kf2

+
1
kh

(11)

式中,下标1和2分别表示主动轮和从动轮.

kt=∑
2

i=1

1
1
ki
b1
+
1
ki
b2
+
1
ki
a1
+
1
ki
a2
+
1
ki
s1
+
1
ki
s2
+
1
ki
f1
+
1
ki
f2
+
1
ki
h  
(12)

式中,i=1,2,分别表示第一对啮合轮齿与第二对

啮合轮齿.

1.2 裂纹齿轮时变啮合刚度计算
  

齿根裂纹是齿轮系统最常见的故障形式之一,

这是由于轮齿的受力与悬臂梁相似,在啮合过程中

齿根部位始终承受最大的弯曲应力和剪切应力.同
时,齿根作为轮齿与齿轮基体的连接处,存在显著

的应力集中现象.
  

含齿根裂纹的直齿轮模型如图
 

2所示,轮齿的

根部存在一个深度为q的裂纹,裂纹与轮齿中心线

的角度为v,并且q和v沿齿宽方向保持不变.裂纹

的出现并不会影响轮齿径向承载能力,因此轴向压

03
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缩刚度、赫兹接触刚度和基体刚度仍可以沿用健康

齿的计算方式.但裂纹的出现会导致有效截面惯性

矩和截面面积减小,弯曲和剪切刚度会发生变化.根
据裂纹深度和角度的不同需要考虑以下3种情况:

  

情况1 hB <hq

Ix =

L
12hx1+hq  3, xA <x≤xQ

2L
3h3

x1, xQ <x≤xB

2L
3h3

x2, xB <x≤xC

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(13)

Ax =

[hx1+hq]L, xA <x≤xQ

2hx1L, xQ <x≤xB

2hx2L, xB <x≤xC

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (14)

  

情况2 hC <hq <hB
 

Ix =

L
12hx1+hq  3, xA <x≤xB

L
12hx2+hq  3, xB <x≤xQ

2L
3h3

x2, xQ <x<xC

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(15)

Ax =

hx1+hq  L, xA <x≤xB

hx2+hq  L, xB <x≤xQ

2hx2L, xQ <x≤xC

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁 (16)

  

情况3 hq <hC
 

Ix =

L
12hx1+hq  3, xA <x≤xB

L
12hx2+hq  3, xB <x≤xC

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(17)

Ax =
hx1+hq  L, xA <x≤xB

hx2+hq  L, xB <x≤xC (18)

图2 裂纹齿轮模型

Fig.2 Model
 

of
 

a
 

cracked
 

gear
 

tooth

综合以上3种情况,将式(13)~(18)代入式

(1)和式(3)中可以得到不同裂纹情况下的弯曲刚

度和剪切刚度,进而可以得到含齿根裂纹的轮齿时

变啮合刚度.

1.3 时变啮合刚度求解
  

根据上文的论述,利用数值方法计算了齿轮系

统的时变啮合刚度,相关系统参数见表
 

1.为了验

证本文方法的有效性,构建了齿轮副的三维有限元

模型,如图
 

3所示.

图3 含裂纹齿轮副有限元模型

Fig.3 Finite
 

element
 

model
 

of
 

a
 

gear
 

pair
 

with
 

tooth
 

crack

表1 齿轮系统参数

Table
 

1 Parameters
 

of
 

the
 

gear
 

system

Parameters Driving
 

gear/
 

Driven
 

gear

Young􀆶s
 

modulus
 

E
 

/GPa 200

Density
 

ρ
 

/(kg/m3) 7850

Poisson􀆶s
 

ratio
 

υ 0.3

Tooth
 

number 24/36

Module
 

/mm 2

Pressure
 

angle
 

/(°) 20

Teeth
 

width
 

/mm 20

Mass
 

/kg 1/1.8

Support
 

stiffness
 

in
 

x
 

direction
 

/(N/m) 6×107

Support
 

stiffness
 

in
 

y
 

direction
 

/(N/m) 6×107
  

为了分析裂纹深度对时变啮合刚度的影响,将

裂纹角度v设定为45°,裂纹深度q分别取1.5
 

mm、

2.5
 

mm、3.5
 

mm.图
 

4(a)和4(b)
 

分别展示了有限

元法与势能法在不同裂纹深度下计算得到的齿轮副

啮合刚度结果.可以看出,两种方法的计算结果吻合

良好,验证了本文所提出啮合刚度计算方法的正确

性.图
 

4中的横坐标为主动轮的转动角度,转动角度

增加表示啮合位置从齿根向齿顶移动.可以看出,裂

纹的产生会导致啮合刚度减小.当裂纹处于初始阶

段,即裂纹长度较小时,刚度的变化较小,而当裂纹

扩展后,刚度减小显著.并且,随着转动角度的增大,

刚度的减小量也随之增大.

13
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图4 不同裂纹深度下的时变啮合刚度:(a)有限元法;(b)势能法

Fig.4 Time-varying
 

mesh
 

stiffness
 

at
 

different
 

crack
 

depths:
 

(a)
 

Finite
 

element
 

method;
 

(b)
 

Potential
 

energy
 

method

1.4 齿轮系统振动方程建立
 

6自由度集总参数齿轮系统动力学模型如图
 

5
所示.在该模型中,齿轮被视为两个刚性圆盘,主动

轮与从动轮通过啮合作用相互耦合.轴承的支撑作

用简化为弹簧,传动轴的质量集中到对应的齿轮节

点上.同时,为简化建模与计算过程,模型中忽略了

质量不平衡、几何偏心等因素对系统动力学响应的

影响.该简化模型在降低系统复杂度的同时保留了

齿轮系统的主要动力学特征,能够有效反映啮合刚

度变化对系统振动响应的影响,使得求解过程更加

高效.

图5 齿轮系统动力学模型

Fig.5 Dynamic
 

model
 

of
 

the
 

gear
 

system

系统的动力学方程表示为

m1x
··
1+c1xx

·
1+k1xx1+Ftsinα0=0

m1x
··
1+c1yy

·
1+k1yy1+Ftcosα0=0

I1θ
··

1+FtRb1=T1

m2x
··
2+c2xx

·
2+k2xx2-Ftsinα0=0

m2x
··
2+c2yy

·
2+k2yy2-Ftcosα0=0

I2θ
··

2-FtRb2=-T2

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(19)

式中,T1、m1和I1分别表示主动轮的扭矩、质量和

转动惯量;T2、m2 和I2 分别表示从动轮的扭矩、质

量和转动惯量;k1x和k1y为主动轮轴承水平和竖直

方向的支撑刚度;k2x和k2y为从动轮轴承水平和竖

直方向的支撑刚度;c1x 和c1y 为主动轮轴承水平和

竖直方向的支撑阻尼;c2x 和c2y 为从动轮轴承水平

和竖直方向的支撑阻尼;Ft是齿轮啮合力表示为

Ft=ctδ
·
+ktδ (20)

式中,δ定义为传递误差,ct是时变啮合阻尼,可分

别表示成

δ=(x1-x2)sinα0+(y1-y2)cosα0+
 θ1Rb1-θ2Rb2 (21)

ct=2ζ
kt

R2
b1/I2+R2

b2/I1
(22)

式中,ζ表示阻尼比.

2 含参数不确定性齿轮系统动力学分析

2.1 区间不确定性描述
  

齿轮系统中的不确定性参数为不确定但有界

的变量.可以用区间的形式表示为

χI= χ
-
,χ

-

  = χc-βχc,χc+βχc  (23)

式中,χI表示区间参数,χ
-

和χ
-

分别表示区间参数

的下界和上界.χc=(χ
-
+χ

-
)/2表示区间参数的中

间值,β为定义不确定程度的不确定系数.扩展到

多维时,式(23)改写为矩阵的形式

χI= χ
-
,χ

-

  = χc-βχc,χc+βχc  (24)
  

考虑不确定参数的影响,齿轮系统的动力学方

程可表示为

M(χI)z··+C(χI)z
·
+K(χI)z=F(χI) (25)

式中,M、C、K 和F 分别表示系统的质量、阻尼、刚
度和激励矩阵.

  

根据 Weierstrass定理,存在多项式g(x)收敛

23
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于在闭区间内连续的函数f(x),即

‖f(x)-g(x)‖� <ε, x ∈ a,b  (26)

gk(x)表示最高阶次为k的多项式集合

gk(x)=a0+a1x+…+akxk (27)

式中,a0,…,ak 表示多项式系数.
  

在gk(x)中,存在唯一多项式满足下式

‖f(x)-g(x)‖� ≥‖f(x)-g*
k (x)‖�

 =Ek(f), x ∈ a,b  (28)

式中,g*
k (x)被称为关于f(x)在区间[a,

 

b]的k
阶最佳一致逼近多项式.

  

由于Chebyshev级数接近最佳一致逼近多项

式,可以用Chebyshev级数有效地近似原函数.
  

对于一维不确定性问题,Chebyshev级数用

Ak 表示为

Ak(x)=cos[karccos(x)], x ∈ [-1,1]

(29)

  

当x ∈ a,b  ,则将Ak 线性变化为Ak(x)=

coskarccos2x-(b+a)
b-a

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁  .Ak(x)存 在 以 下

递推关系

A0(x)=1;

A1(x)=x;

…

Ak(x)=2xAk-1(x)-Ak-2(x)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

, k=1,2,…

(30)

Ak(x)在x∈ -1,1  上关于权函数ρ(x)=

1/ 1-x2 正交,即

∫
1

-1

Ak(x)Ap(x)

1-x2
dx

 =∫
π

0
cos[karccos(x)]cos[parccos(x)]dx

 =

π, k=p=0
π
2
, k=p≠0

0, k≠p

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(31)
  

函数f(x)可近似为基于Chebyshev级数的k
阶多项式

f(x)≈Ak(x)=
f0

2 +∑
k

i=1
fiAi(x) (32)

式中,fi 为常系数,可由以下积分计算

∫
1

-1

f(x)Ak(x)

1-x2
dx

 ≈∫
1

-1

Ak(x)

1-x2

f0

2 +∑
k

i=1
fiAi(x)  dx

 =∫
1

-1

f0Ak(x)

2 1-x2
dx+∑

k

i=1

fiAi(x)Ak(x)

1-x2
dx

(33)

结合式(31)可得

fi=
2
π∫

1

-1

f(x)Ai(x)

1-x2
dx, i=0,1,…,k

(34)

  

通过Gauss-Chebyshev数值积分公式对上式

插值积分可得

fi=
2
π∫

1

-1

f(x)Ai(x)

1-x2
dx

 ≈
2
n∑

n

j=1
f(xj)Ai(xj) (35)

xj =cos
2j-1
2n π  , j=1,2,...,n (36)

式中,n 表示插值点数,xj 表示插值点.值得注意

的是,为了保证逼近的精度,插值点数必须大于逼

近方程的阶数,即n≥k+1.
  

综上所述,f(x)的k阶多项式为

f(x)≈gk =
1
n∑

n

j=1
f(xj)+

 2n∑
k

i=1
∑
n

j=1
f(xj)Ai(xj)Ai(x) (37)

  

对于多维不确定性问题,r维Chebyshev多项

式是每个不确定参数的一维Chebyshev多项式的

张量积,即

Ak1,k2,…kr
(x1,x2,…,xr)

 =cos[k1arccos(x1)]cos[k2arccos(x2)]…

cos[krarccos(xr)] (38)
  

具有r个不确定参数的函数f(x)近似为

f(x)≈∑
k

i1=0

…∑
k

ir=0

1
2  

m

fi1,…,irAi1,…,ir
(x)(39)

式中,m 表示下标i1,…,ir 中0的个数.常系数

fi1,…,ir
可以计算为

fi1,…,ir =
2
π  

r

∫
1

-1
…

  ∫
1

-1

f(x)Ai1,…ir
(x)

1-x2… 1-x2
r

dx1…dxr

≈
2
k  

r

∑
k

i1=1

…∑
k

ir=1
f(xi1

,…,xir
)Ai1

(xj1
)…

 Air
(xjr

) (40)
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将具有区间型参数不确定的齿轮系统的动态

响应视为连续可微函数.通过对插值点处的确定性

响应进行数值计算,可以确定该不确定齿轮系统的

响应边界,计算流程如图
 

6所示.

图6 不确定性齿轮系统响应计算流程图

Fig.6 Flowchart
 

for
 

calculating
 

the
 

response
 

of
 

the
 

uncertain
 

gear
 

system

2.2 参数不确定影响下齿轮系统动力学特性
  

不同不确定参数定义为相互独立并且不含任

何概率模型的区间变量,区间的中点值为表
 

1所示

的确定性参数,区间的上下边界由不确定系数决

定.值得注意的是,在不确定区间内,区间参数对齿

轮系统的影响并不是简单的线性映射,区间的上界

不一定导致严重的振动响应,同理,振型响应的下

边界也不一定由区间参数的下界确定.
  

首先,考虑一维参数不确定的影响,对被动轮

在竖直方向的位移y2 进行研究.分别取Cheby-

shev多项式阶数k=4,插值点数n=5和阶数k=
7,插值点数n=10,在质量的不确定系数为5%时,

对系统的幅频响应进行了分析,如图
 

7所示.从结

果可以看出,在k=4,n=5系统响应区间已趋于

收敛,波动较小.进一步提高阶数与插值点数后,系

统响应变化不明显.因此,本文在后续不确定性分

析中采用k=4,n=5作为Chebyshev方法的配

置,以兼顾计算精度与效率.
  

具有不确定质量的齿轮系统幅频响应如图
 

8
所示,不确定系数依次取5%和10%.可以看出,确
定性系统的幅频响应始终位于不确定性系统的响

应区间之内.随着不确定系数增大,系统幅频响应

区间进一步扩大,特别是在共振区域.质量的不确

定导致系统原本的单一共振频率扩展为一个频率

范围,形成了共振带,这意味着在确定性共振频率

附近的一个范围内,系统的振动幅值可能都很严

重.与确定性齿轮系统相比,不确定性齿轮系统的

最大幅值对应频率产生了频移现象.这种现象说明

质量不确定对齿轮系统的固有属性有较大影响.

图7 不同Chebyshev多项式阶数与插值点下的响应结果

Fig.7 Response
 

results
 

under
 

different
 

Chebyshev
 

polynomial
 

orders
 

and
 

interpolation
 

points

图8 质量m2 不确定时健康齿轮系统y2 的幅频响应

Fig.8 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

healthy
 

gear
 

system
 

under
 

mass
 

m2
 uncertainty

  

图
 

9给出了具有不确定支撑刚度齿轮系统的

幅频响应.与质量不确定不同的是,支撑刚度不确

定形成的共振带的频率范围主要位于小于确定性

系统共振频率的区域.由频移现象可知,支撑刚度

不确定对齿轮系统的固有属性也有较大影响.
具有不确定弹性模量的齿轮系统幅频响应如

图
 

10所示.从图中可以观察到,弹性模量不确定对
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共振峰具有显著影响,而对其他区域的振动幅值影

响较小.齿轮系统并未发生频移现象,说明在弹性

模量不确定的影响下,系统本质上仍是线性系统,

其固有频率仅与质量和刚度有关.
为了研究裂纹的影响,将裂纹角度设定为45°,

裂纹深度设定为3.5
 

mm.相比于图8~10,裂纹的

产生不会改变幅频曲线的包络形式,但会提升整个

区域的振动响应,如图11~13所示.在一些区域内,

图9 支撑刚度k2y不确定时健康齿轮系统y2 的幅频响应

Fig.9 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

healthy
 

gear
 

system
 

under
 

support
 

stiffness
 

k2y uncertainty

图10 弹性模量E 不确定时健康齿轮系统y2 的幅频响应

Fig.10 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

healthy
 

gear
 

system
 

under
 

Young􀆶s
 

modulus
 

E
 

uncertainty
 

图11 质量m2 不确定时裂纹齿轮系统y2 的幅频响应

Fig.11 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

gear
 

system
 

with
 

tooth
 

cracks
 

under
 

mass
 

m2
 uncertainty

裂纹齿轮系统振动响应的下边界甚至已经超过健

康齿轮系统响应的上边界.
在单参数不确定性分析的基础上,进一步考虑

多源不确定性参数对y2 响应的影响.如图
 

14所

示,当齿轮质量、轴承刚度及弹性模量等参数同时

存在区间不确定性时,齿轮系统的振动响应不是简

单的线性叠加,确定性的分析方法已无法准确有效地

图12 支撑刚度k2y不确定时裂纹齿轮系统y2 的幅频响应

Fig.12 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

gear
 

system
 

with
 

tooth
 

cracks
 

under
 

support
 

stiffness
 

k2y uncertainty

图13 弹性模量E 不确定时裂纹齿轮系统y2 的幅频响应

Fig.13 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

gear
 

system
 

with
 

tooth
 

cracks
 

under
 

Young􀆶s
 

modulus
 

E
 

uncertainty

图14 多源参数不确定时裂纹齿轮系统y2 的幅频响应

Fig.14 Amplitude-frequency
 

response
 

of
 

y2 in
 

the
 

gear
 

system
 

with
 

tooth
 

cracks
 

under
 

multi-source
 

parameter
 

uncertainties
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体现齿轮系统的振动行为.在多源不确定性参数的

影响下,齿轮系统的幅频响应区间包含了单个参数

不确定时的特征,包括频移,共振带等特性.当裂纹

产生时,振动响应被进一步放大,齿轮每旋转一圈

都会受到一次巨大的冲击,这显然危害到齿轮系统

的可靠性和安全性.

3 结论
  

本文将齿轮轮齿视为以齿根圆为边界的变截

面悬臂梁,利用势能法建立了健康轮齿和裂纹轮齿

理论模型,研究了裂纹深度对时变啮合刚度的影

响.在此基础上,结合Chebyshev区间分析方法构

建了不确定齿轮系统分析模型.分析了不同不确定

参数对齿轮系统动态特性的影响.主要结论如下:
  

(1)
 

在参数不确定的影响下,齿轮系统的幅频

响呈现包络形式,包络形状与不确定参数密切相

关,多源不确定性导致系统响应比单源不确定性偏

差更明显.
  

(2)
 

随着裂纹深度的增加,时变啮合刚度逐渐

减小.在裂纹的影响下,具有不确定性参数直齿轮

系统的振动影响被进一步放大,大大削弱了系统的

稳定性和可靠性.
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