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Abstract Rotor systems operating under harsh conditions, such as high-speed rotation., long-term
operation, and alternating loads, are susceptible to crack faults that pose a threat to operational stabili-
ty. The vibration resulting from crack faults in rotor systems reflect the abnormal process of energy
transmission from the external driving point through the shaft. Therefore, employing the vibration
power flow method, this study investigates elastically supported cantilevered rotors under the influence
of crack faults to reveal the underlying energy characteristics. Furthermore, examining vibrational ener-
gy variations in cracked rotor systems within high-speed regions during nonlinear bifurcation reveals that

energy curves oscillate during quasi-periodic and multi-periodic transitions.
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Table 1 Parameters for the nonlinear response analysis of
the cracked rotor system
Parameter Symbol Value
Disk mass m 0.8 kg
Eccentricity of disc mass e 5X10 ' m
Disk diameter d, 80X10 ° m
© Shaftlength L 0.600m
Shaft diameter d 10X10 % m
Young’s modulus E 2.1X10" Pa
Support 12 K. K, 5X10° N/m

transverse stiffness

Support 2#

. K., K, 5%X10° N/m
transverse stiffness ’

Crack depth h 2X10 * m
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Fig. 2 Campbell diagram and mode of the rotor system without
crack: (a) Campbell diagram; (b) First-order mode;
(¢) Second-order mode
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Fig. 3 Comparison of displacement bifurcation between the rotor
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(b) Crack depth 2X10* m
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Fig. 4 Response of the cracked rotor system at the 1/2 critical

speed region: (a) Displacement-rotation speed curve;
(b) Time-averaged power flow-rotation speed curve
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