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Research on Passive Control of Fluid-Conveying Pipe under Elastic Boundary "

Luo Longhui Ye Sigin'  Yin Lairong
(School of Mechanical and Vehicle Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Abstract As a critical fluid-conveying component in mechanical structures, the stability and safety of
fluid-conveying pipes during operation are of particular importance. Taking a fluid-conveying pipe as an
example, this paper investigates the passive boundary control of the pipe by coupling an Inertial nonlin-
ear energy sink at its elastic boundary. Firstly, the nonlinear control equations of a fluid-conveying pipe
with elastic supports coupled with an inertial —based nonlinear energy sink are derived using the general-
ized Hamilton’s principle. Subsequently, the natural frequencies and mode shapes of the fluid-conveying
pipe are obtained. Then, the control equations are discretized using the Galerkin truncation method, and
the steady-state response of the coupled system is solved through numerical simulation based on the
Runge-Kutta method. Finally, the influence of key parameters of the vibration absorber on the vibration
reduction effect of the structure is discussed. The results indicate that the coupled inertial nonlinear en-
ergy sink exhibits effective vibration control for the fluid-conveying pipe without altering its inherent dy-
namic characteristics. The parameters of the inertial-based nonlinear energy sink have different effects on
the vibration suppression performance; there exists an optimal damping coefficient, while increasing the

inertance and the cubic nonlinearity enhances the vibration mitigation.
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Table 1 Parameters of the fluid-conveying pipe

Name Symbol Value
Outer diameter D 0.006 m
Pipe wall thickness h 0.0006 m
Moment of inertia I, 1.195 56 X10 "'m"
Young’s modulus E 206 GPa
Fluid density ot 720 kg/m®
Pipe density 0p 7850 kg/m®
Pipe length L 1m
Left-side spring stiffness K, 300 N/m
Right-side spring stiffness Ky 300 N/m
External damping C 1.0 N/(m/s)
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Fig. 2 Variation of frequency with flow velocity under different
truncation orders: (a) First-order and second-order frequencies;
(b) Third-order and fourth-order frequencies
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Cubic nonlinearity kL =k ar 2x10" N/m®
Damping CNL=CNR 1 N/(m/s)
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