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Abstract This study investigates a galloping system integrated with a series of piezoelectric dynamic vi-
bration absorbers (PDVAs), achieving the dual functions of vibration suppression and energy harves-
ting. The incremental harmonic balance method (IHBM) is employed to derive the periodic solutions of
the galloping suppression system equipped with different vibration absorbers, and the results are valida-
ted through numerical simulations. Comparative analyses of wind speed-displacement curves, wind
speed-voltage characteristics, phase portraits, and time-history responses demonstrate excellent agree-
ment between the IHBM and numerical solutions. Notably, under identical computational conditions,
the IHBM exhibits significantly higher computational efficiency than numerical methods, providing a
more efficient analytical approach for the analysis of galloping systems. Furthermore, parametric studies
are conducted to evaluate the influence of PDVA parameters-including mass, stiffness,and damping on
both the primary system’s vibration suppression performance and the output voltage. The comparative

assessment elucidates the effects of these parameters on vibration mitigation, thereby guiding the opti-
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mal design of absorbers through appropriate parameter selection.
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Fig.1 The schematic of the galloping vibration control system
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Table 1 The physical parameters of the galloping
suppression system

Symbol Representative parameter Value

m, Mass of square bluff body /kg 0.44
¢y Structural damping of square bluff body /(N + s/m) 0.003 59

ky Structural stiffness of square bluff body /(N/m) 432.3752

D, Effective diameter of square bluff body /m 0.0015

w, Natural frequency of the system /(rad/s) 31.42

0. Fluid density /(kg/m?*) 1.2
ajsas Empirical aerodynamic parameters 2.3,—18
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Table 2 Computation time for different numbers of
harmonic terms and computation difference

Relative error from

Number of harmonic . i .
Calculation time /s

terms oded5 /(%)
3 6.808 737 100
5 9.483 778 100
7 33.818 463 1.43
11 77.041 995 1.43
15 166.711 033 1.43
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Table 3 Calculation time differences of steady-state wind

speed-displacement curves of the main system and wind
speed-voltage curves of the system for four working conditions

Working condition Method Time /s Time difference /s

IHB  30.778 298 _
WVA oded5  303.077 293 272. 298 995

IHB 31.7401
LVA ode45 339. 181 520 307, 441420

IHB  145.820 615 o
PVA oded5  328.364 534 182. 543 919

IHB 147. 856 836
HVA ode45 330. 242 926 182. 386 090
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Table 4 The computational time differences of the load

resistance-power-voltage curves under three
working conditions at a wind speed of 5 m/s
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