95 23 %5 6 1 o L5 HE E R Vol. 23 No. 6
2025 4% 6 JOURNAL OF DYNAMICS AND CONTROL Jun. 2025

LB Y5 :1672-6553-2025-23(6)-086-009 DOI1:10.6052/1672-6553-2025-001

1 [ 2 R L EE LRl ¥ AR B 3ot B B SR UG 3G HIE

BB KER KHE A

(FHMITRY MY, § 266525)

WE MRS UK A 5T B 45 R R ) AU R Sfe A2 32 14N T I ) S A 1) 2L AT 5l O] JBORY 1) B 48 47 b
T MR35 8 A R B A U0 52 0 7 T 5% B0 TR I A 432 fih g A5 2R R g 000 405 SR o i Ak 19 G B SRy e DA TR
TE Al BRI JTURL Ay BF 5% % 42, 43 1) SR FH 3R iy BEL J& A% 20 70 78 4 BEL J8 4SS 80 4 N7 AV 1 AR 5 AR T Al 488 1) B g 2 A
B, 3 S R (5 LA 5T T IBE BURE 7 AN TR Mk O BB R Y B 0 S AT . BE S L R T 5 O B A SE B AR AL
XF TS TR B Al AR RS R S IR A5 R 0 22 5. BE A AR B N TR 0 B Al ) AL S S A5 R B LR
K25, B F W T 7 MR 48 R 2R B A%, SR i Lankarani-Nikravesh #5581 45 5 1k 42 5 B0 B, BHLJE &40
55 BE AR, S B PR K R R S PR A AR H00% S B . 0 2R BELJE A0 B b R AT AR R T T R
110 RN U A AR A 5 BB VR S R B W) & SR T B PR B e A B BT 13 45 2R 2 5 LR 45 R B W & (B A B 1T

NURE S G
KR AERRB R,  FEIERGEE, HAUEOR, IRE RE
FENES:0313.4 XEktRERD A

Comparative Study and Experimental Validation of Friction-Collision Models

for Elliptical Particles”

Cheng Yongbo Zhang Xin’gang Zhang Shucui Yao Wenli'
(School of Science, Qingdao University of Technology, Qingdao 266525, China)

Abstract Friction and collision problems in multibody systems and granular media pose significant chal-
lenges in future planetary surface exploration. Investigating the collision behavior and state evolution of
non-spherical particles holds promising practical applications. Selecting an appropriate contact force
model is crucial for improving the accuracy of predictive outcomes. To this end, elliptical non-spherical
particles were chosen as the research object. The hysteretic damping model and the viscous damping
model were respectively employed to establish dynamic models for the collision of elliptical particles with
an inclined plane. Numerical simulations were conducted to investigate the dynamic behavior of elliptical
particles under different contact force models. Subsequently, an experimental prototype was fabricated
using acrylic sheets to compare the differences between the simulation results of various contact force
models and the experimental findings. The results reveal significant discrepancies between the different
contact force models and the experimental outcomes. Due to the relatively low coefficient of restitution of the
acrylic sheets, the use of high coefficient of restitution models, such as the Lankarani-Nikravesh model, leads to

weak damping effects and minimal energy dissipation, resulting in a significant discrepancy between the actual
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coefficient of restitution and the preset coefficient of restitution. If the denominator of the damping term includes

the coefficient of restitution, the calculated values can match the preset coefficient of restitution over a wider

range. The results obtained using the viscous damping model are generally consistent with the experimental re-

sults but are prone to producing negative contact forces.

Key words non-spherical particles,
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Fig. 1 Collision between elliptical particles and slopes
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