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Research on Active Steering of Virtual Rail Train with Multi-Objective
Adaptive Weight"

Lu Ye Yang Caijin’ Li Daoyang Zhou Wenqing Zhang Weihua

(State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031)

Abstract To improve the path tracking accuracy and vehicle stability of virtual rail trains at different
speeds, an active steering control algorithm is proposed based on the virtual rail train dynamics model
and model predictive control theory, which adaptively adjusts the weight coefficients of the cost function
according to the vehicle speed. Firstly, a dynamic model of a three-car virtual track train is established.
To improve the accuracy of the model, genetic algorithm is used to identify the parameters of tire lateral
stiffness. Secondly, shift registers are used to store the trajectory of the first vehicle as the target path
for the following vehicle. Then, based on model predictive control theory, the steering angles of the
first, fourth, and sixth axes are determined, and based on Stanley algorithm, the steering angles of the
second, third, and fifth axes are determined. A multi-objective controller considering vehicle lateral
error, center of mass lateral angle, and wheel angle variation is designed. Next, to address the issue of
poor adaptability of multi-objective controllers with fixed weight coefficients at different vehicle speeds,

a fuzzy adjustment strategy based on dynamic optimization of weight coefficients at vehicle speeds is
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proposed. Finally, the TruckSim/Simulink simulation platform is built to study the dynamic characteris-
tics of vehicles under typical road conditions by setting different speeds. The results indicate that the a-
daptive weight controller can effectively improve the path tracking accuracy and vehicle stability of virtu-
al rail trains at different speeds. Compared to fixed weight controllers, adaptive weight controllers can

better adapt to changes in the operating speed of virtual rail trains and improve their operational

performance.
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Fig. 1 Control logic diagram of virtual rail train active steering
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Fig. 2 Structure diagram of the virtual rail train
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Table 1 Parameters of virtual rail train

Parameter Value

Mass of first car m, /kg 9140
Intermediate car mass m,/kg 6330
Tailcar mass m,/kg 6330
Distances a;/m 2.6
Distances b;/m 2.6
Distances d;/m 2.25
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Table 2 Main parameters of genetic algorithm

Main parameters of genetic algorithm Value
Population size 50
Elite number 5
Cross progeny ratio 0.4
Maximal evolutionary algebra 40
Stop algebra 40

Fitness function deviation le—100
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Table 3 Identification value of lateral stiffness

Identification value of lateral stiffness Value
ky 18 8121 N/rad
k, 205 083 N/rad
k, 112 422 N/rad
ky 124 128 N/rad
ks 134 951 N/rad
kg 135 024 N/rad
20m

Bl 4 BT EIE T A
Fig. 4 Model validation conditions
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(a) Verification of the first vehicle's yaw velocity
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(b) Verification of the second vehicle's yaw velocity
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Fig.5 Model comparison analysis
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Comparison of simulation results

FEERGITR

Table 5 Simulation result statistics

Dynamic indicators

Fixed weight Adaptive weight Fixed weight Adaptive weight Data statistics

Data statistics

60 km/h 60 km/h 20 km/h 20 km/h 60 km/h 20 km/h

Slip angel of the second vehicle (MAX) 1. 5862 1. 0556 2. 6357 2.8526 —33.45% +8.23%
Slip angel of the third vehicle (MAX) 0.7212 0.3308 1. 7040 1. 8551 —54.13% +8.87%
Lateral error of A, (RMS) 6.67 6.61 6. 14 5.31 —0.9% —16.45%
Lateral error of A, (RMS) 1.18 1.08 4,97 3.42 —8.4% —31.19%
Lateral error of A;(RMS) 2.59 2.1 5.72 4.74 —18.92% —17.13%
Lateral error of A4 (RMS) 1.48 1.27 2.96 1.58 —14.19% —46.62%
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Fig. 10  Wheel angle variation
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