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Abstract Aiming at the phenomenon of thermal-induced vibrations and escape times in the operation of
large flexible appendages on spacecraft, and constructs a dynamic model with constraints considering the
influence of thermal effects on the large flexible thick plate structures. The study investigates the effects
of plate thickness, plate length, and solar radiation incident angle on the escape time. This paper as-
sumes that the solar radiant thermal load uniformly loaded at the surface of the plate and only transfers
in the thickness direction, combine with theories of continuum mechanics, establish the expression for
the elastic force of a flexible plate element which considering the thermal effect. Based on the ANCF and
Mindlin plate theory, combine with the Lagrange multiplier method, build the dynamic model of the
large flexible thick plate which constraint are obtained, and itsdynamic response is solved. On this basis.,
using numerical simulation, the influence of factors such as plate, plate length, and solar radiation inci-
dent angle on the escape phenomenon in thermal-induced vibrations is analyzed. The numerical analysis
reveals that the escape time is inversely proportional to the heat flow intensity but directly proportional
to the structural dimensional parameters (including length, width, and thickness). Among these, varia-

tions in the length and thickness parameters exhibit a particularly significant impact on the escape time.
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