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Abstract To enhance the launch capacity and performance, nearly all active launch vehicles incorporate
two or more stages. During the launch process, gradual reduction of the launch vehicle mass is achieved
by separating and discarding the spent propellant stages, which plays a vital role in ensuring the safety of
the launch vehicle and successful launches. During the manufacturing and assembly processes of launch
vehicle components, inherent deviations are inevitably encountered. These deviations may lead to a sce-
nario where the launch vehicle is unable to execute separation maneuvers as per the intended plan, conse-

quently directly impacting the stability of the separation body’s attitude and potentially resulting in mis-
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sion failure. The principles of stage separation of launch vehicles and dynamic governing equations are e-
lucidated. Utilizing the Modelica language, models for the first stage and second stage of carrier rockets
are developed to account for parameter deviations. Additionally, force models, explosive bolt models,
separation gap models, and initial state models are established. These components are then assembled u-
sing a block-diagram and interconnection approach to construct a comprehensive Modelica model for the
stage separation system of launch vehicles. The correctness of the model is verified through comparison
of simulation results with an Adams model. Due to manufacturing and force deviations following certain
probability distributions. such as uniform, normal, and Weibull distributions, a Monte Carlo shooting
method is employed to conduct reliability simulation and analysis of the launch vehicle stage separation
process that considers these deviations. The simulation results indicate that this approach can identify

adverse conditions during stage separation, providing design engineers with the minimum separation gap

under extreme scenarios, thus optimizing the design margin for the separation system.

Key words stage separation, reliability,
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Fig. 1 Stage separation theoretical model of launch vehicles
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Table 1 Parameters of stage separation system
Parameter Value
Retro engines ng 8
Aty /s 0.005
P/N 10 750
iy /s 0.9
ty/s 0.5
Ogr/m 1.9
xR/m 41
B0/ () 22
7R/ 0
A/ 0
or/ (M) 0
Br/ 22
""" Positive engines  », 2
Atp/s 0.01
P,/N 2200
Y /s 4
1y/s 0
op/m 2
rp/m 15
Opy/ (") 20
/(D 0
An/ () 0
op/ () 0
Br/ 22

Residual thrusts N 4
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Parameter Value ——MWORKS |
4 ADAMS
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E a8t o
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. g 47t e
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IVAS) 35 a ///
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Sloshing force Py/N 150 (a) Displacement
ts/s ! * = [ —MwoRKS
i85 0.5 2.0 4 ADAMS
S e /
rs/m 14. 106 g1 4
8s/m 0 g 1.0 +/
As/ () 0 i 05 ¢ //'
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) e
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5 E |
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-------------------------------------------------------------------------------------------- 3 !
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0.0 |
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8,2/m 0 1.0l ! ! I
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) £2.0 1
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Fig. 10 The displacement, velocity, acceleration, angular velocity

and angular acceleration of stage 1 in X direction
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Fig. 11

The displacement, velocity, acceleration, angular velocity
and angular acceleration of stage 2 in X direction
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Table 2 Parameters obeying uniform distribution
Parameter Min. Max.
IIVAS. 0 360
a, /() 0 360
a,/(*) 0 360
As/ (D) 0 360

Table 3 Parameters obeying Weibull distribution

Parameter Scale parameter Shape parameter
AN/ 7.5 1
0, /m 33 2
0,,/m 2.2 2
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Table 4 Parameters obeying normal distribution

Parameter Min. Max. Mean Variance
Positive engine P,/N 2000 2400 2200 67
ty/s 0 0. 02 0.01 0.003
/s 3.85 4.15 4 0.05
© Retro engine  Po/N 02125 122875 w070 s
ty/s 0 0.01 0.005 0.002
ty /s 0. 844 0. 956 0.9 0.02
"""" Stgel  M,/ke 2395 27205 2555 50
8,.,/m 0 —0.4 0.4 0.13
I,,/(kg+m® 53 734. 4 57 373.6 55 554 607
I,,/(kg+>m” 2 330 313 3892 029 3111171 260 286
I.,/(kg+m®) 2 330 313 3892 029 3111171 260 286
"""" Stge2z  M,/kg  498%0.6  70109.4 60000 3370
8,,/m 0 —1.4 1.4 0. 47
I, /(kg+m®) 19 402.1 20 669. 9 22 222 211
I, /(kg+m") 411 614 477 208 444 411 10 932
I.,/(kg+m?”) 411 614 477 208 444 411 10 932
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Fig. 12 Different distributions of three parameters
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Fig. 15 Time history of stage separation gap in Case 1
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Fig. 17 Time history of stage separation gap in Case 2 with

one positive engine failure
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Fig. 19 Time history of stage separation gap in Case 2

with two positive engines failure
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Fig. 23 Schematic diagram of failures of two retro engines
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Fig. 24 Time history of stage separation gap in Case 3

with two retro engines failure
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