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Vibration Suppression of a Robotic Arm with a Flexible Beam Based on

Particle Swarm Optimization and Genetic Algorithm”

Luo Qingpeng Li Chenglin Liu Xianbo'
(School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract To improve the running accuracy of the end-actuator of a flexible manipulator in the desired
trajectory and reduce the vibrations caused by the motion of the manipulator in a confined space, this
study proposed a trajectory planning strategy based on the particle swarm optimization algorithm and ge-
netic algorithm to effectively suppress vibrations. In the study, the slender actuator was abstracted as a
flexible beam with concentrated terminal mass attachment, and the dynamics of the flexible beam were
simplified using the Cartesian modeling method. The interpolation parameters of the end-actuator trajec-
tory planning were adjusted by the optimization algorithm, considering the end-actuator vibrations
during the task execution and the residual vibrations at the end of the task, and an optimization model
was built to minimize the amplitude of vibrations. The simulation results show that the optimized trajec-
tory significantly reduces the vibration amplitude of the end-actuator throughout the motion process. To
ensure that the manipulator can accurately execute the trajectory, a multi-body kinematic model of the
manipulator system was established, and the optimal joint motion trajectory was obtained by solving the
problem under the singularity space and obstacle constraint conditions. In the experiment, the joint mo-

tion commands were executed by the manipulator, and the actual motion of the flexible end-actuator was
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monitored by the binocular vision system to verify the effectiveness of the dynamics-based trajectory

planning in vibration suppression.

Key words flexible robotic arm,

zation, genetic algorithm
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Table 1 MDH parameters of the robotic arms
i 0,/ d;/m a; ,/m a; /()
1 0, 0 0.1201 0
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6 0 0 0.1070 —90
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elbow singularity region
wrist singularity region
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Unsolvable region of robotic arm

Fig. 9



%56

B A5 M A« e TORE T T S AR R T D AR LB R 4 SR i I Sl 4 ] T 5 45

AR A AUTCAR 4 LA % o DO A 35 3 2900 e ik )
T P T 5 R B S A O LB T BRAT B L
L2 S 5 A7 AE AT 50 2

3.2 HULAE BT R R

TE B0 IE 7 45 S I A6 56 10 A 45 21 1 30 P B
18 S5 B 23R I 5 K ML 14 G 75 038 ik )AL
PR b AT 0. MUBRET 7 Al A7 S S ) IR WIS D0 T
A 8 L, WAL 7 v 25 [A) AT RE A 4 4 A7 &0 78
BIUAHRE 2R S 184 0K S PR A7 % 5 s A7k B b T R 2
T BB R o PAT 2 5 LB 7 A A LB
AT Z 8] ] e 7 A Rl Oy (45 3 1 0% 310 9 B e
J5 SR RE N V) 52 M IS A7 7E SE B A HLARE th , 7E DL
P& S BRIz AT B 2 AT 7 0 A A A R i 1 Bl
B AR 8 AT R L3 R

R FH il % 55 1) 4 ] £ (axis-aligned bounding
box, AABB) J5 ¥ X B AR AU 32 4 DL KOK S $hA T
o FEATRAL 38 3k ) D, B 6 2 M) Y L R A
/NTZ AT, a] LA E HLBUE fE s A7 BLE F 2R
AIRE R AT, MLBE A 6 > A i E, s 5 Ak
JEFIES 6 B B R HLBCE 19— AR T BLE AT AT %
Fe TR A5 ) B A 5 T A 7 A ] A A
162 1 MR AL AT 7 R D AR SR AT [E] 521 1 em
F18) ) B S 00 Al 438 A 280 DGl 43 1 AL BT O Y 4 1]
fife HEFE 1 SFAE AALME iz 17800, 15 21K 10 i
73 A 1R A 7 LA e MU 3B A7 P 10

link 1

link 2
> link 5,6 7
7 ]
[ e

flexible terminal

(b) MARAT 1B AT 5L

(b) Robotic arm motion condition

@ WREEEEHE

(a) Robotic arm bounding box model

P10 HIUBRE ik P

Fig. 10 Tlustration of Robotic arm obstacle avoidance
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Fig. 12 Schematic diagram of the overall experiment
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