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Abstract This paper derives the nonlinear angular motion equations of canard self-rotating projectile and
investigates the stability of the system’s angular motion through Hopf bifurcation analysis. Taking a
specific model of a canard self-rotating projectile as an example, based on the variation of the system’s
eigenvalues and the calculated Hopf bifurcation curve, the angular motion stability region is divided into
the stable convergence region, stable coning region, and unstable region, which is further validated
through simulation calculations. By calculating the changes in the positions of the Hopf bifurcation point
and limit cycle bifurcation point with respect to parameter variations, the qualitative influence of parame-
ters on the system’s stability boundary is studied. Additionally, the unstable limit cycle radius is ob-
tained using the Hurwitz stability criterion, allowing for a quantitative investigation of the influence of
parameters on the system’s stability boundary. The results indicate that nonlinear aerodynamic moment
coefficients and control deflections significantly affect the system’s bifurcation characteristics. There-
fore, designers should carefully select these parameters to ensure optimal aerodynamic performance and

stability.
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Fig.1 Schematic of canard self-rotating fins projectile model
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